HOME



picture info

Schmidt Camera
A Schmidt camera, also referred to as the Schmidt telescope, is a catadioptric astrophotographic telescope designed to provide wide fields of view with limited aberrations. The design was invented by Bernhard Schmidt in 1930. Some notable examples are the Samuel Oschin telescope (formerly Palomar Schmidt), the UK Schmidt Telescope and the ESO Schmidt; these provided the major source of all-sky photographic imaging from 1950 until 2000, when electronic detectors took over. A recent example is the Kepler space telescope exoplanet finder. Other related designs are the Wright camera and Lurie–Houghton telescope. Invention and design The Schmidt camera was invented by Estonian-German optician Bernhard Schmidt in 1930. Its optical components are an easy-to-make spherical primary mirror, and an aspherical correcting lens, known as a Schmidt corrector plate, located at the center of curvature of the primary mirror. The film or other detector is placed inside the camera, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Focal Ratio
An f-number is a measure of the light-gathering ability of an optical system such as a camera lens. It is calculated by dividing the system's focal length by the diameter of the entrance pupil ("clear aperture").Smith, Warren ''Modern Optical Engineering'', 4th Ed., 2007 McGraw-Hill Professional, p. 183. The f-number is also known as the focal ratio, f-ratio, or f-stop, and it is key in determining the depth of field, diffraction, and Exposure (photography), exposure of a photograph. The f-number is dimensionless number, dimensionless and is usually expressed using a lower-case Ƒ, hooked f with the format ''N'', where ''N'' is the f-number. The f-number is also known as the inverse relative aperture, because it is the Multiplicative inverse, inverse of the relative aperture, defined as the aperture diameter divided by focal length. The relative aperture indicates how much light can pass through the lens at a given focal length. A lower f-number means a larger relative apertur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Amateur Telescope Making
Amateur telescope making is the activity of building telescopes as a hobby, as opposed to being a paid professional. Amateur telescope makers (sometimes called ATMs) build their instruments for personal enjoyment of a technical challenge, as a way to obtain an inexpensive or personally customized telescope, or as a research tool in the field of astronomy. Amateur telescope makers are usually a sub-group in the field of amateur astronomy. Beginnings Ever since Galileo Galilei adapted a Dutch invention for astronomical use, astronomical telescope making has been an evolving discipline. Many astronomers after the time of Galileo built their own telescopes out of necessity, but the advent of amateurs in the field building telescopes for their own enjoyment and education seems to have come into prominence in the 20th century. Before the advent of modern mass-produced telescopes, the price of even a modest instrument was often beyond the means of an aspiring amateur astronomer. Buildin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Schmidt–Cassegrain Telescope
The Schmidt–Cassegrain is a catadioptric telescope that combines a Cassegrain reflector's optical path with a Schmidt corrector plate to make a compact astronomical instrument that uses simple spherical surfaces. Invention and design The American astronomer and lens designer James Gilbert Baker first proposed a Cassegrain design for Bernhard Schmidt's Schmidt camera in 1940. The optical shop at Mount Wilson Observatory manufactured the first one during World War II as part of their research into optical designs for the military. As in the Schmidt camera, this design uses a spherical primary mirror and a Schmidt corrector plate to correct for spherical aberration. In this Cassegrain configuration the convex secondary mirror acts as a field flattener and relays the image through the perforated primary mirror to a final focal plane located behind the primary. Some designs include additional optical elements (such as field flatteners) near the focal plane. The first large t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Schmidt Telescope
Schmidt may refer to: * Schmidt (surname), including list of people and fictional characters with the surname * Schmidt (singer) (born 1990), German pop and jazz singer * Schmidt (lunar crater), a small lunar impact crater * Schmidt (Martian crater), a crater on Mars * Schmidt (volcano), in Kamchatka * Schmidt Block, listed on the National Register of Historic Places in Scott County, Iowa, USA * Schmidt Brewery, a St. Paul brewery * Schmidt camera, an astronomical telescope designed for photography * Schmidt–Cassegrain telescope, a version of the Schmidt camera * Schmidt Site, an archeological site in Michigan, USA, listed on the National Register of Historic Places in 1973 * Schmidt Spiele, a German games manufacturer * Schmidt Baking Company, makers of Schmidt's Blue Ribbon Bread * von Schmidt auf Altenstadt, a German baronial family in Kirchgattendorf, part of the municipality of Gattendorf * Schmidt Island, an island in the Novaya Zemlya archipelago in the Arcti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spherical Aberration
In optics, spherical aberration (SA) is a type of aberration found in optical systems that have elements with spherical surfaces. This phenomenon commonly affects lenses and curved mirrors, as these components are often shaped in a spherical manner for ease of manufacturing. Light rays that strike a spherical surface off-centre are refracted or reflected more or less than those that strike close to the centre. This deviation reduces the quality of images produced by optical systems. The effect of spherical aberration was first identified in the 11th century by Ibn al-Haytham who discussed it in his work Kitāb al-Manāẓir. Overview A spherical lens has an aplanatic point (i.e., no spherical aberration) only at a lateral distance from the optical axis that equals the radius of the spherical surface divided by the index of refraction of the lens material. Spherical aberration makes the focus of telescopes and other instruments less than ideal. This is an important effect, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Aspheric Lens
An aspheric lens or asphere (often labeled ''ASPH'' on eye pieces) is a lens whose surface profiles are not portions of a sphere or cylinder. In photography, a lens assembly that includes an aspheric element is often called an aspherical lens. The asphere's more complex surface profile can reduce or eliminate spherical aberration and also reduce other optical aberrations such as astigmatism, compared to a simple lens. A single aspheric lens can often replace a much more complex multi-lens system. The resulting device is smaller and lighter, and sometimes cheaper than the multi-lens design. Aspheric elements are used in the design of multi-element wide-angle and fast normal lenses to reduce aberrations. They are also used in combination with reflective elements (catadioptric systems) such as the aspherical Schmidt corrector plate used in the Schmidt cameras and the Schmidt–Cassegrain telescopes. Small molded aspheres are often used for collimating diode lasers. Aspher ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Schema Lame De Schmidt
Schema may refer to: Science and technology * SCHEMA (bioinformatics), an algorithm used in protein engineering * Schema (genetic algorithms), a set of programs or bit strings that have some genotypic similarity * Schema.org, a web markup vocabulary * Schema (logic) ** Axiom schema, in formal logic * Image schema, a recurring pattern of spatial sensory experience * Database schema * XML schema Other * Body schema, a neural representation of one's own bodily posture * Galant Schemata, stock phrases in Galant music * Schema (Kant), in philosophy * Schema (psychology), a mental set or representation * Schema Records, a jazz record label in Milan, Italy *, a solemn vow of asceticism of a monk in Orthodox monasticism ** Great Schema, the highest degree of Orthodox monasticism * ''Schema'' (fly), a genus of insects See also * Scheme (other) Scheme or schemer may refer to: Arts and entertainment * '' The Scheme'', a BBC Scotland documentary TV series * The Scheme (band), ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Diffraction
Diffraction is the deviation of waves from straight-line propagation without any change in their energy due to an obstacle or through an aperture. The diffracting object or aperture effectively becomes a secondary source of the Wave propagation, propagating wave. Diffraction is the same physical effect as Wave interference, interference, but interference is typically applied to superposition of a few waves and the term diffraction is used when many waves are superposed. Italian scientist Francesco Maria Grimaldi coined the word ''diffraction'' and was the first to record accurate observations of the phenomenon in 1660 in science, 1660. In classical physics, the diffraction phenomenon is described by the Huygens–Fresnel principle that treats each point in a propagating wavefront as a collection of individual spherical wavelets. The characteristic pattern is most pronounced when a wave from a Coherence (physics), coherent source (such as a laser) encounters a slit/aperture tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Field Flattener Lens
Field flattener lens is a type of lens used in modern binocular designs and in astronomic telescopes to improve edge sharpness. Field flattener lenses counteract the Petzval field curvature of an optical system, mitigating the field-angle dependence of the focal length of a system. Details The object in designing a field flattening lens is to create a lens that shifts the focal points of the Petzval surface to lie in the same plane. Consider inserting a pane of glass in a focusing beam. Due to refraction, the focal point of the beam is shifted by \delta_ dependent on the thickness of the glass. Thus we have a thickness as a function of focal shift: :t(\delta_)=\left(\frac\right)\delta_. \delta_(y) is given by the radius of curvature of the Petzval surface, R_. It can be shown, then, that the radius of curvature for the lens that would flatten out the field is given by :R_=\left(\frac\right)R_. Examples of use In the 21st century, the New Horizons ''New Horizons'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vacuum
A vacuum (: vacuums or vacua) is space devoid of matter. The word is derived from the Latin adjective (neuter ) meaning "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often discuss ideal test results that would occur in a ''perfect'' vacuum, which they sometimes simply call "vacuum" or free space, and use the term partial vacuum to refer to an actual imperfect vacuum as one might have in a laboratory or in space. In engineering and applied physics on the other hand, vacuum refers to any space in which the pressure is considerably lower than atmospheric pressure. The Latin term ''in vacuo'' is used to describe an object that is surrounded by a vacuum. The ''quality'' of a partial vacuum refers to how closely it approaches a perfect vacuum. Other things equal, lower gas pressure means higher-quality vacuum. For example, a typical vacuum cleaner produces enough suction to reduce air pressur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Focal Plane
In Gaussian optics, the cardinal points consist of three pairs of points located on the optical axis of a rotationally symmetric, focal, optical system. These are the '' focal points'', the principal points, and the nodal points; there are two of each. For ''ideal'' systems, the basic imaging properties such as image size, location, and orientation are completely determined by the locations of the cardinal points. For simple cases where the medium on both sides of an optical system is air or vacuum four cardinal points are sufficient: the two focal points and either the principal points or the nodal points. The only ideal system that has been achieved in practice is a plane mirror, however the cardinal points are widely used to the behavior of real optical systems. Cardinal points provide a way to analytically simplify an optical system with many components, allowing the imaging characteristics of the system to be approximately determined with simple calculations. Explanation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]