HOME





Scatterplot Smoothing
In statistics, several scatterplot smoothing methods are available to fit a function through the points of a scatterplot to best represent the relationship between the variables. Scatterplots may be smoothed by fitting a line to the data points in a diagram. This line attempts to display the non-random component of the association between the variables in a 2D scatter plot. Smoothing attempts to separate the non-random behaviour in the data from the random fluctuations, removing or reducing these fluctuations, and allows prediction of the response based value of the explanatory variable.Dodge, Y. (2006) ''The Oxford Dictionary of Statistical Terms'', OUP. (entry for "smoothing") Smoothing is normally accomplished by using any one of the techniques mentioned below. * A straight line (simple linear regression) * A quadratic polynomial, quadratic or a polynomial curve * Local regression * Smoothing splines The smoothing curve is chosen so as to provide the best fit in some sense, of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Statistics
Statistics (from German language, German: ', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of statistical survey, surveys and experimental design, experiments. When census data (comprising every member of the target population) cannot be collected, statisticians collect data by developing specific experiment designs and survey sample (statistics), samples. Representative sampling assures that inferences and conclusions can reasonably extend from the sample ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Scatterplot
A scatter plot, also called a scatterplot, scatter graph, scatter chart, scattergram, or scatter diagram, is a type of plot or mathematical diagram using Cartesian coordinates to display values for typically two variables for a set of data. If the points are coded (color/shape/size), one additional variable can be displayed. The data are displayed as a collection of points, each having the value of one variable determining the position on the horizontal axis and the value of the other variable determining the position on the vertical axis. History According to Michael Friendly and Daniel Denis, the defining characteristic distinguishing scatter plots from line charts is the representation of specific observations of bivariate data where one variable is plotted on the horizontal axis and the other on the vertical axis. The two variables are often abstracted from a physical representation like the spread of bullets on a target or a geographic or celestial projection. Wh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Explanatory Variable
A variable is considered dependent if it depends on (or is hypothesized to depend on) an independent variable. Dependent variables are studied under the supposition or demand that they depend, by some law or rule (e.g., by a mathematical function), on the values of other variables. Independent variables, on the other hand, are not seen as depending on any other variable in the scope of the experiment in question. Rather, they are controlled by the experimenter. In pure mathematics In mathematics, a function is a rule for taking an input (in the simplest case, a number or set of numbers)Carlson, Robert. A concrete introduction to real analysis. CRC Press, 2006. p.183 and providing an output (which may also be a number). A symbol that stands for an arbitrary input is called an independent variable, while a symbol that stands for an arbitrary output is called a dependent variable. The most common symbol for the input is , and the most common symbol for the output is ; the function ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Simple Linear Regression
In statistics, simple linear regression (SLR) is a linear regression model with a single explanatory variable. That is, it concerns two-dimensional sample points with one independent variable and one dependent variable (conventionally, the ''x'' and ''y'' coordinates in a Cartesian coordinate system) and finds a linear function (a non-vertical straight line) that, as accurately as possible, predicts the dependent variable values as a function of the independent variable. The adjective ''simple'' refers to the fact that the outcome variable is related to a single predictor. It is common to make the additional stipulation that the ordinary least squares (OLS) method should be used: the accuracy of each predicted value is measured by its squared '' residual'' (vertical distance between the point of the data set and the fitted line), and the goal is to make the sum of these squared deviations as small as possible. In this case, the slope of the fitted line is equal to the corre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Quadratic Polynomial
In mathematics, a quadratic function of a single variable is a function of the form :f(x)=ax^2+bx+c,\quad a \ne 0, where is its variable, and , , and are coefficients. The expression , especially when treated as an object in itself rather than as a function, is a quadratic polynomial, a polynomial of degree two. In elementary mathematics a polynomial and its associated polynomial function are rarely distinguished and the terms ''quadratic function'' and ''quadratic polynomial'' are nearly synonymous and often abbreviated as ''quadratic''. The graph of a real single-variable quadratic function is a parabola. If a quadratic function is equated with zero, then the result is a quadratic equation. The solutions of a quadratic equation are the zeros (or ''roots'') of the corresponding quadratic function, of which there can be two, one, or zero. The solutions are described by the quadratic formula. A quadratic polynomial or quadratic function can involve more than one variabl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Polynomial
In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addition, subtraction, multiplication and exponentiation to nonnegative integer powers, and has a finite number of terms. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problem (mathematics education), word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; and they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Local Regression
Local regression or local polynomial regression, also known as moving regression, is a generalization of the moving average and polynomial regression. Its most common methods, initially developed for scatterplot smoothing, are LOESS (locally estimated scatterplot smoothing) and LOWESS (locally weighted scatterplot smoothing), both pronounced . They are two strongly related non-parametric regression methods that combine multiple regression models in a ''k''-nearest-neighbor-based meta-model. In some fields, LOESS is known and commonly referred to as Savitzky–Golay filter (proposed 15 years before LOESS). LOESS and LOWESS thus build on "classical" methods, such as linear and nonlinear least squares regression. They address situations in which the classical procedures do not perform well or cannot be effectively applied without undue labor. LOESS combines much of the simplicity of linear least squares regression with the flexibility of nonlinear regression. It does this b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Smoothing Spline
Smoothing splines are function estimates, \hat f(x), obtained from a set of noisy observations y_i of the target f(x_i), in order to balance a measure of goodness of fit of \hat f(x_i) to y_i with a derivative based measure of the smoothness of \hat f(x). They provide a means for smoothing noisy x_i, y_i data. The most familiar example is the cubic smoothing spline, but there are many other possibilities, including for the case where x is a vector quantity. Cubic spline definition Let \ be a set of observations, modeled by the relation Y_i = f(x_i) + \epsilon_i where the \epsilon_i are independent, zero mean random variables. The cubic smoothing spline estimate \hat f of the function f is defined to be the unique minimizer, in the Sobolev space W^2_2 on a compact interval, of : \sum_^n \^2 + \lambda \int \hat^(x)^2 \,dx. Remarks: * \lambda \ge 0 is a smoothing parameter, controlling the trade-off between fidelity to the data and roughness of the function estimate. This is oft ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Sum Of Squared Error
Squared deviations from the mean (SDM) result from squaring deviations. In probability theory and statistics, the definition of ''variance'' is either the expected value of the SDM (when considering a theoretical distribution) or its average value (for actual experimental data). Computations for ''analysis of variance'' involve the partitioning of a sum of SDM. Background An understanding of the computations involved is greatly enhanced by a study of the statistical value : \operatorname( X ^ 2 ), where \operatorname is the expected value operator. For a random variable X with mean \mu and variance \sigma^2, : \sigma^2 = \operatorname( X ^ 2 ) - \mu^2.Mood & Graybill: ''An introduction to the Theory of Statistics'' (McGraw Hill) (Its derivation is shown here.) Therefore, : \operatorname( X ^ 2 ) = \sigma^2 + \mu^2. From the above, the following can be derived: : \operatorname\left( \sum\left( X ^ 2\right) \right) = n\sigma^2 + n\mu^2, : \operatorname\left( \left(\sum X ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Least Squares
The method of least squares is a mathematical optimization technique that aims to determine the best fit function by minimizing the sum of the squares of the differences between the observed values and the predicted values of the model. The method is widely used in areas such as regression analysis, curve fitting and data modeling. The least squares method can be categorized into linear and nonlinear forms, depending on the relationship between the model parameters and the observed data. The method was first proposed by Adrien-Marie Legendre in 1805 and further developed by Carl Friedrich Gauss. History Founding The method of least squares grew out of the fields of astronomy and geodesy, as scientists and mathematicians sought to provide solutions to the challenges of navigating the Earth's oceans during the Age of Discovery. The accurate description of the behavior of celestial bodies was the key to enabling ships to sail in open seas, where sailors could no longer rely on la ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Additive Model
In statistics, an additive model (AM) is a nonparametric regression method. It was suggested by Jerome H. Friedman and Werner Stuetzle (1981) and is an essential part of the ACE algorithm. The ''AM'' uses a one-dimensional smoother to build a restricted class of nonparametric regression models. Because of this, it is less affected by the curse of dimensionality than a ''p''-dimensional smoother. Furthermore, the ''AM'' is more flexible than a standard linear model, while being more interpretable than a general regression surface at the cost of approximation errors. Problems with ''AM'', like many other machine-learning methods, include model selection, overfitting, and multicollinearity. Description Given a data set \_^n of ''n'' statistical units, where \_^n represent predictors and y_i is the outcome, the ''additive model'' takes the form : \mathrm x_, \ldots, x_= \beta_0+\sum_^p f_j(x_) or : Y= \beta_0+\sum_^p f_j(X_)+\varepsilon Where \mathrm \epsilon = 0, \mathrm(\e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Generalized Additive Model
In statistics, a generalized additive model (GAM) is a generalized linear model in which the linear response variable depends linearly on unknown smooth functions of some predictor variables, and interest focuses on inference about these smooth functions. GAMs were originally developed by Trevor Hastie and Robert Tibshirani to blend properties of generalized linear models with additive models. They can be interpreted as the discriminative generalization of the naive Bayes generative model. The model relates a univariate response variable, ''Y'', to some predictor variables, ''x''''i''. An exponential family distribution is specified for Y (for example normal, binomial or Poisson distributions) along with a link function ''g'' (for example the identity or log functions) relating the expected value of ''Y'' to the predictor variables via a structure such as : g(\operatorname(Y))=\beta_0 + f_1(x_1) + f_2(x_2)+ \cdots + f_m(x_m).\,\! The functions ''f''''i'' may be functions with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]