HOME



picture info

Riemann Zeta Function
The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter (zeta), is a mathematical function of a complex variable defined as \zeta(s) = \sum_^\infty \frac = \frac + \frac + \frac + \cdots for and its analytic continuation elsewhere. The Riemann zeta function plays a pivotal role in analytic number theory and has applications in physics, probability theory, and applied statistics. Leonhard Euler first introduced and studied the function over the reals in the first half of the eighteenth century. Bernhard Riemann's 1859 article "On the Number of Primes Less Than a Given Magnitude" extended the Euler definition to a complex variable, proved its meromorphic continuation and functional equation, and established a relation between its zeros and the distribution of prime numbers. This paper also contained the Riemann hypothesis, a conjecture about the distribution of complex zeros of the Riemann zeta function that many mathematicians consider th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Functional Equation
In mathematics, a functional equation is, in the broadest meaning, an equation in which one or several functions appear as unknowns. So, differential equations and integral equations are functional equations. However, a more restricted meaning is often used, where a ''functional equation'' is an equation that relates several values of the same function. For example, the logarithm functions are essentially characterized by the ''logarithmic functional equation'' \log(xy)=\log(x) + \log(y). If the domain of the unknown function is supposed to be the natural numbers, the function is generally viewed as a sequence, and, in this case, a functional equation (in the narrower meaning) is called a recurrence relation. Thus the term ''functional equation'' is used mainly for real functions and complex functions. Moreover a smoothness condition is often assumed for the solutions, since without such a condition, most functional equations have very irregular solutions. For example, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dirichlet L-function
In mathematics, a Dirichlet L-series is a function of the form :L(s,\chi) = \sum_^\infty \frac. where \chi is a Dirichlet character and s a complex variable with real part greater than 1 . It is a special case of a Dirichlet series. By analytic continuation, it can be extended to a meromorphic function on the whole complex plane, and is then called a Dirichlet L -function and also denoted L ( s , \chi) . These functions are named after Peter Gustav Lejeune Dirichlet who introduced them in to prove the Dirichlet's theorem on arithmetic progressions, theorem on primes in arithmetic progressions that also bears his name. In the course of the proof, Dirichlet shows that L ( s , \chi) is non-zero at s = 1 . Moreover, if \chi is principal, then the corresponding Dirichlet L -function has a simple pole at s = 1 . Otherwise, the L -function is entire function, entire. Euler product Since a Dirichlet character \chi is completely multiplicative, its L -function can also ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dirichlet Series
In mathematics, a Dirichlet series is any series of the form \sum_^\infty \frac, where ''s'' is complex, and a_n is a complex sequence. It is a special case of general Dirichlet series. Dirichlet series play a variety of important roles in analytic number theory. The most usually seen definition of the Riemann zeta function is a Dirichlet series, as are the Dirichlet L-functions. Specifically, the Riemann zeta function ''ζ(s)'' is the Dirichlet series of the constant unit function ''u(n)'', namely: \zeta(s) = \sum_^\infty \frac = \sum_^\infty \frac = D(u, s), where ''D(u, s)'' denotes the Dirichlet series of ''u(n)''. It is conjectured that the Selberg class of series obeys the generalized Riemann hypothesis. The series is named in honor of Peter Gustav Lejeune Dirichlet. Combinatorial importance Dirichlet series can be used as generating series for counting weighted sets of objects with respect to a weight which is combined multiplicatively when taking Cartesian product ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Modular Form
In mathematics, a modular form is a holomorphic function on the complex upper half-plane, \mathcal, that roughly satisfies a functional equation with respect to the group action of the modular group and a growth condition. The theory of modular forms has origins in complex analysis, with important connections with number theory. Modular forms also appear in other areas, such as algebraic topology, sphere packing, and string theory. Modular form theory is a special case of the more general theory of automorphic forms, which are functions defined on Lie groups that transform nicely with respect to the action of certain discrete subgroups, generalizing the example of the modular group \mathrm_2(\mathbb Z) \subset \mathrm_2(\mathbb R). Every modular form is attached to a Galois representation. The term "modular form", as a systematic description, is usually attributed to Erich Hecke. The importance of modular forms across multiple field of mathematics has been humorously re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rational Number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all rational numbers is often referred to as "the rationals", and is closed under addition, subtraction, multiplication, and division by a nonzero rational number. It is a field under these operations and therefore also called the field of rationals or the field of rational numbers. It is usually denoted by boldface , or blackboard bold A rational number is a real number. The real numbers that are rational are those whose decimal expansion either terminates after a finite number of digits (example: ), or eventually begins to repeat the same finite sequence of digits over and over (example: ). This statement is true not only in base 10, but also in every other integer base, such as the binary and hexadecimal ones (see ). A real n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Apéry's Constant
In mathematics, Apéry's constant is the infinite sum of the reciprocals of the positive integers, cubed. That is, it is defined as the number : \begin \zeta(3) &= \sum_^\infty \frac \\ &= \lim_ \left(\frac + \frac + \cdots + \frac\right), \end where is the Riemann zeta function. It has an approximate value of : . It is named after Roger Apéry, who proved that it is an irrational number. Uses Apéry's constant arises naturally in a number of physical problems, including in the second- and third-order terms of the electron's gyromagnetic ratio using quantum electrodynamics. It also arises in the analysis of random minimum spanning trees and in conjunction with the gamma function when solving certain integrals involving exponential functions in a quotient, which appear occasionally in physics, for instance, when evaluating the two-dimensional case of the Debye model and the Stefan–Boltzmann law. The reciprocal of (0.8319073725807... ) is the probabil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Roger Apéry
Roger Apéry (; 14 November 1916, Rouen – 18 December 1994, Caen) was a Greek-French mathematician most remembered for Apéry's theorem, which states that is an irrational number. Here, denotes the Riemann zeta function. Biography Apéry was born in Rouen in 1916 to a French mother and Greek father. His childhood was spent in Lille until 1926, when the family moved to Paris, where he studied at the Lycée Ledru-Rollin and the Lycée Louis-le-Grand. He was admitted at the École normale supérieure in 1935. His studies were interrupted at the start of World War II; he was mobilized in September 1939, taken prisoner of war in June 1940, repatriated with pleurisy in June 1941, and hospitalized until August 1941. He wrote his doctoral thesis in algebraic geometry under the direction of Paul Dubreil and René Garnier in 1947. In 1947 Apéry was appointed Maître de conférences (lecturer) at the University of Rennes. In 1949 he was appointed Professor at the University of C ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Basel Problem
The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, and read on 5 December 1735 in Russian Academy of Sciences#History, ''The Saint Petersburg Academy of Sciences''. Since the problem had withstood the attacks of the leading mathematicians of the day, Euler's solution brought him immediate fame when he was twenty-eight. Euler generalised the problem considerably, and his ideas were taken up more than a century later by Bernhard Riemann in his seminal 1859 paper "On the Number of Primes Less Than a Given Magnitude", in which he defined his Riemann zeta function, zeta function and proved its basic properties. The problem is named after the city of Basel, hometown of Euler as well as of the Bernoulli family who unsuccessfully attacked the problem. The Basel problem asks for the precise summation of the Multiplicative inv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Clay Mathematics Institute
The Clay Mathematics Institute (CMI) is a private, non-profit foundation dedicated to increasing and disseminating mathematical knowledge. Formerly based in Peterborough, New Hampshire, the corporate address is now in Denver, Colorado. CMI's scientific activities are managed from the President's office in Oxford, United Kingdom. It gives out various awards and sponsorships to promising mathematicians. The institute was founded in 1998 through the sponsorship of Boston businessman Landon T. Clay. Harvard mathematician Arthur Jaffe was the first president of CMI. While the institute is best known for its Millennium Prize Problems, it carries out a wide range of activities, including conferences, workshops, summer schools, and a postdoctoral program supporting Clay Research Fellows. Governance The institute is run according to a standard structure comprising a scientific advisory committee that decides on grant-awarding and research proposals, and a board of directors that overs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pure Mathematics
Pure mathematics is the study of mathematical concepts independently of any application outside mathematics. These concepts may originate in real-world concerns, and the results obtained may later turn out to be useful for practical applications, but pure mathematicians are not primarily motivated by such applications. Instead, the appeal is attributed to the intellectual challenge and aesthetic beauty of working out the logical consequences of basic principles. While pure mathematics has existed as an activity since at least ancient Greece, the concept was elaborated upon around the year 1900, after the introduction of theories with counter-intuitive properties (such as non-Euclidean geometries and Cantor's theory of infinite sets), and the discovery of apparent paradoxes (such as continuous functions that are nowhere differentiable, and Russell's paradox). This introduced the need to renew the concept of mathematical rigor and rewrite all mathematics accordingly, with a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conjecture
In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis or Fermat's conjecture (now a theorem, proven in 1995 by Andrew Wiles), have shaped much of mathematical history as new areas of mathematics are developed in order to prove them. Resolution of conjectures Proof Formal mathematics is based on ''provable'' truth. In mathematics, any number of cases supporting a universally quantified conjecture, no matter how large, is insufficient for establishing the conjecture's veracity, since a single counterexample could immediately bring down the conjecture. Mathematical journals sometimes publish the minor results of research teams having extended the search for a counterexample farther than previously done. For instance, the Collatz conjecture, which concerns whether or not certain sequences of integers terminate, has been tested for all integers up to 1.2 × 101 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]