Programming Language For Computable Functions
   HOME





Programming Language For Computable Functions
In computer science, Programming Computable Functions (PCF), or Programming with Computable Functions, or Programming language for Computable Functions, is a programming language which is typed and based on functional programming, introduced by Gordon Plotkin in 1977, based on prior unpublished material by Dana Scott. It can be considered as an extended version of the typed lambda calculus, or a simplified version of modern typed functional languages such as ML or Haskell. A fully abstract model for PCF was first given by Robin Milner. However, since Milner's model was essentially based on the syntax of PCF it was considered less than satisfactory. The first two fully abstract models not employing syntax were formulated during the 1990s. These models are based on game semantics and Kripke logical relations. For a time it was felt that neither of these models was completely satisfactory, since they were not effectively presentable. However, Ralph Loader demonstrated that no effect ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Functional Programming
In computer science, functional programming is a programming paradigm where programs are constructed by Function application, applying and Function composition (computer science), composing Function (computer science), functions. It is a declarative programming paradigm in which function definitions are Tree (data structure), trees of Expression (computer science), expressions that map Value (computer science), values to other values, rather than a sequence of Imperative programming, imperative Statement (computer science), statements which update the State (computer science), running state of the program. In functional programming, functions are treated as first-class citizens, meaning that they can be bound to names (including local Identifier (computer languages), identifiers), passed as Parameter (computer programming), arguments, and Return value, returned from other functions, just as any other data type can. This allows programs to be written in a Declarative programming, d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


λ-abstraction
In mathematical logic, the lambda calculus (also written as ''λ''-calculus) is a formal system for expressing computation based on function abstraction and application using variable binding and substitution. Untyped lambda calculus, the topic of this article, is a universal machine, a model of computation that can be used to simulate any Turing machine (and vice versa). It was introduced by the mathematician Alonzo Church in the 1930s as part of his research into the foundations of mathematics. In 1936, Church found a formulation which was logically consistent, and documented it in 1940. Lambda calculus consists of constructing lambda terms and performing reduction operations on them. A term is defined as any valid lambda calculus expression. In the simplest form of lambda calculus, terms are built using only the following rules: # x: A variable is a character or string representing a parameter. # (\lambda x.M): A lambda abstraction is a function definition, taking as i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Functional Languages
In computer science, functional programming is a programming paradigm where programs are constructed by applying and composing functions. It is a declarative programming paradigm in which function definitions are trees of expressions that map values to other values, rather than a sequence of imperative statements which update the running state of the program. In functional programming, functions are treated as first-class citizens, meaning that they can be bound to names (including local identifiers), passed as arguments, and returned from other functions, just as any other data type can. This allows programs to be written in a declarative and composable style, where small functions are combined in a modular manner. Functional programming is sometimes treated as synonymous with purely functional programming, a subset of functional programming that treats all functions as deterministic mathematical functions, or pure functions. When a pure function is called with some ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Educational Programming Languages
Education is the transmission of knowledge and skills and the development of character traits. Formal education occurs within a structured institutional framework, such as public schools, following a curriculum. Non-formal education also follows a structured approach but occurs outside the formal schooling system, while informal education involves unstructured learning through daily experiences. Formal and non-formal education are categorized into levels, including early childhood education, primary education, secondary education, and tertiary education. Other classifications focus on teaching methods, such as teacher-centered and Student-centered learning, student-centered education, and on subjects, such as science education, language education, and physical education. Additionally, the term "education" can denote the mental states and qualities of educated individuals and the academic field studying educational phenomena. The precise definition of education is disputed, an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Academic Programming Languages
An academy (Attic Greek: Ἀκαδήμεια; Koine Greek Ἀκαδημία) is an institution of tertiary education. The name traces back to Plato's school of philosophy, founded approximately 386 BC at Akademia, a sanctuary of Athena, the goddess of wisdom and skill, north of Athens, Greece. The Royal Spanish Academy defines academy as scientific, literary or artistic society established with public authority and as a teaching establishment, public or private, of a professional, artistic, technical or simply practical nature. Etymology The word comes from the ''Academy'' in ancient Greece, which derives from the Athenian hero, ''Akademos''. Outside the city walls of Athens, the gymnasium was made famous by Plato as a center of learning. The sacred space, dedicated to the goddess of wisdom, Athena, had formerly been an olive grove, hence the expression "the groves of Academe". In these gardens, the philosopher Plato conversed with followers. Plato developed his sessions ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Programming Languages Created In 1977
Program (American English; also Commonwealth English in terms of computer programming and related activities) or programme (Commonwealth English in all other meanings), programmer, or programming may refer to: Business and management * Program management, the process of managing several related projects * Time management * Program, a part of planning Arts and entertainment Audio * Programming (music), generating music electronically * Radio programming, act of scheduling content for radio * Synthesizer programmer, a person who develops the instrumentation for a piece of music Video or television * Broadcast programming, scheduling content for television * Program music, a type of art music that attempts to render musically an extra-musical narrative * Synthesizer patch or program, a synthesizer setting stored in memory * "Program", an instrumental song by Linkin Park from '' LP Underground Eleven'' * Programmer, a film on the lower half of a double feature bill; see B-movie S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Theoretical Computer Science (journal)
''Theoretical Computer Science'' (''TCS'') is a computer science journal published by Elsevier, started in 1975 and covering theoretical computer science. The journal publishes 52 issues a year. It is abstracted and indexed by Scopus and the Science Citation Index. According to the Journal Citation Reports, its 2020 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a type of journal ranking. Journals with higher impact factor values are considered more prestigious or important within their field. The Impact Factor of a journa ... is 0.827. References Computer science journals Elsevier academic journals Academic journals established in 1975 {{comp-sci-theory-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parallel Or
In logic, disjunction (also known as logical disjunction, logical or, logical addition, or inclusive disjunction) is a logical connective typically notated as \lor and read aloud as "or". For instance, the English language sentence "it is sunny or it is warm" can be represented in logic using the disjunctive formula S \lor W , assuming that S abbreviates "it is sunny" and W abbreviates "it is warm". In classical logic, disjunction is given a truth functional semantics according to which a formula \phi \lor \psi is true unless both \phi and \psi are false. Because this semantics allows a disjunctive formula to be true when both of its disjuncts are true, it is an ''inclusive'' interpretation of disjunction, in contrast with exclusive disjunction. Classical proof theoretical treatments are often given in terms of rules such as disjunction introduction and disjunction elimination. Disjunction has also been given numerous non-classical treatments, motivated by problems inclu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Least Fixed Point
In order theory, a branch of mathematics, the least fixed point (lfp or LFP, sometimes also smallest fixed point) of a function from a partially ordered set ("poset" for short) to itself is the fixed point which is less than each other fixed point, according to the order of the poset. A function need not have a least fixed point, but if it does then the least fixed point is unique. Examples With the usual order on the real numbers, the least fixed point of the real function ''f''(''x'') = ''x''2 is ''x'' = 0 (since the only other fixed point is 1 and 0 < 1). In contrast, ''f''(''x'') = ''x'' + 1 has no fixed points at all, so has no least one, and ''f''(''x'') = ''x'' has infinitely many fixed points, but has no least one. Let G = (V, A) be a directed graph and v be a vertex. The

Cartesian Closed
In category theory, a Category (mathematics), category is Cartesian closed if, roughly speaking, any morphism defined on a product (category theory), product of two Object (category theory), objects can be naturally identified with a morphism defined on one of the factors. These categories are particularly important in mathematical logic and the theory of programming, in that their internal language is the simply typed lambda calculus. They are generalized by closed monoidal category, closed monoidal categories, whose internal language, linear type systems, are suitable for both quantum computation, quantum and classical computation. Etymology Named after René Descartes (1596–1650), French philosopher, mathematician, and scientist, whose formulation of analytic geometry gave rise to the concept of Cartesian product, which was later generalized to the notion of categorical product. Definition The category C is called Cartesian closed iff it satisfies the following three propert ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Scott-continuous
In mathematics, given two partially ordered sets ''P'' and ''Q'', a function ''f'': ''P'' → ''Q'' between them is Scott-continuous (named after the mathematician Dana Scott) if it preserves all directed suprema. That is, for every directed subset ''D'' of ''P'' with supremum in ''P'', its image has a supremum in ''Q'', and that supremum is the image of the supremum of ''D'', i.e. \sqcup f = f(\sqcup D), where \sqcup is the directed join. When Q is the poset of truth values, i.e. Sierpiński space, then Scott-continuous functions are characteristic functions of open sets, and thus Sierpiński space is the classifying space for open sets. A subset ''O'' of a partially ordered set ''P'' is called Scott-open if it is an upper set and if it is inaccessible by directed joins, i.e. if all directed sets ''D'' with supremum in ''O'' have non-empty intersection with ''O''. The Scott-open subsets of a partially ordered set ''P'' form a topology on ''P'', the Scott topology. A function be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Domain Theory
Domain theory is a branch of mathematics that studies special kinds of partially ordered sets (posets) commonly called domains. Consequently, domain theory can be considered as a branch of order theory. The field has major applications in computer science, where it is used to specify denotational semantics, especially for functional programming languages. Domain theory formalizes the intuitive ideas of approximation and convergence in a very general way and is closely related to topology. Motivation and intuition The primary motivation for the study of domains, which was initiated by Dana Scott in the late 1960s, was the search for a denotational semantics of the lambda calculus. In this formalism, one considers "functions" specified by certain terms in the language. In a purely syntactic way, one can go from simple functions to functions that take other functions as their input arguments. Using again just the syntactic transformations available in this formalism, one can obtai ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]