HOME
*



picture info

Penrose Process
The Penrose process (also called Penrose mechanism) is theorised by Sir Roger Penrose as a means whereby energy can be extracted from a rotating black hole. The process takes advantage of the ergosphere --- a region of spacetime around the black hole dragged by its rotation ''faster than the speed of light'', meaning that from the point of an outside observer any matter inside is forced to move in the direction of the rotation of the black hole. In the process, a working body falls (black thick line in the figure) into the ergosphere (gray region). At its lowest point (red dot) the body fires a propellant backwards; however, to a faraway observer both seem to continue to move forward due to frame-dragging (albeit at different speeds). The propellant, being slowed, falls (thin gray line) to the event horizon of the black hole (black disk). And the remains of the body, being sped up, fly away (thin black line) with an excess of energy (that more than offsets the loss of the prope ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Roger Penrose
Sir Roger Penrose (born 8 August 1931) is an English mathematician, mathematical physicist, philosopher of science and Nobel Laureate in Physics. He is Emeritus Rouse Ball Professor of Mathematics in the University of Oxford, an emeritus fellow of Wadham College, Oxford, and an honorary fellow of St John's College, Cambridge and University College London. Penrose has contributed to the mathematical physics of general relativity and cosmology. He has received several prizes and awards, including the 1988 Wolf Prize in Physics, which he shared with Stephen Hawking for the Penrose–Hawking singularity theorems, and one half of the 2020 Nobel Prize in Physics "for the discovery that black hole formation is a robust prediction of the general theory of relativity". He is regarded as one of the greatest living physicists, mathematicians and scientists, and is particularly noted for the breadth and depth of his work in both natural and formal sciences. Early life and education ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rotating Black Hole
A rotating black hole is a black hole that possesses angular momentum. In particular, it rotates about one of its axes of symmetry. All celestial objects – planets, stars (Sun), galaxies, black holes – spin. Types of black holes There are four known, exact, black hole solutions to the Einstein field equations, which describe gravity in general relativity. Two of those rotate: the Kerr and Kerr–Newman black holes. It is generally believed that every black hole decays rapidly to a stable black hole; and, by the no-hair theorem, that (except for quantum fluctuations) stable black holes can be completely described at any moment in time by these 11 numbers: * mass-energy ''M'', * linear momentum ''P'' (three components), * angular momentum ''J'' (three components), * position ''X'' (three components), * electric charge ''Q''. These numbers represent the conserved attributes of an object which can be determined from a distance by examining its electromagnetic and grav ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Gravitation (book)
''Gravitation'' is a widely adopted textbook on Albert Einstein's general theory of relativity, written by Charles W. Misner, Kip S. Thorne, and John Archibald Wheeler. It was originally published by W. H. Freeman and Company in 1973 and reprinted by Princeton University Press in 2017. It is frequently abbreviated ''MTW'' (for its authors' last names). The cover illustration, drawn by Kenneth Gwin, is a line drawing of an apple with cuts in the skin to show the geodesics on its surface. The book contains 10 parts and 44 chapters, each beginning with a quotation. The bibliography has a long list of original sources and other notable books in the field. While this may not be considered the best introductory text because its coverage may overwhelm a newcomer, and even though parts of it are now out of date, it remains a highly valued reference for advanced graduate students and researchers. Content Subject matter After a brief review of special relativity and flat spacetime, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ergosphere
file:Ergosphere_and_event_horizon_of_a_rotating_black_hole_(no_animation).gif, 300px, In the ergosphere (shown here in light gray), the component ''gtt'' is negative, i.e., acts like a purely spatial metric component. Consequently, timelike or lightlike worldlines within this region must co-rotate with the inner mass. Kerr–Newman metric#Alternative .28Kerr.E2.80.93Schild.29 formulation, Cartesian Kerr–Schild coordinates, equatorial perspective. The ergosphere is a region located outside a rotating black hole's outer event horizon. Its name was proposed by Remo Ruffini and John Archibald Wheeler during the Les Houches lectures in 1971 and is derived from the Greek word (''ergon''), which means "work". It received this name because it is theoretically possible to Penrose process, extract energy and mass from this region. The ergosphere touches the event horizon at the poles of a rotating black hole and extends to a greater radius at the equator. A black hole with modest angular ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Frame-dragging
Frame-dragging is an effect on spacetime, predicted by Albert Einstein's general theory of relativity, that is due to non-static stationary distributions of mass–energy. A stationary field is one that is in a steady state, but the masses causing that field may be non-static ⁠— rotating, for instance. More generally, the subject that deals with the effects caused by mass–energy currents is known as gravitoelectromagnetism, which is analogous to the magnetism of classical electromagnetism. The first frame-dragging effect was derived in 1918, in the framework of general relativity, by the Austrian physicists Josef Lense and Hans Thirring, and is also known as the Lense–Thirring effect. They predicted that the rotation of a massive object would distort the spacetime metric, making the orbit of a nearby test particle precess. This does not happen in Newtonian mechanics for which the gravitational field of a body depends only on its mass, not on its rotation. The L ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Penrose Process
The Penrose process (also called Penrose mechanism) is theorised by Sir Roger Penrose as a means whereby energy can be extracted from a rotating black hole. The process takes advantage of the ergosphere --- a region of spacetime around the black hole dragged by its rotation ''faster than the speed of light'', meaning that from the point of an outside observer any matter inside is forced to move in the direction of the rotation of the black hole. In the process, a working body falls (black thick line in the figure) into the ergosphere (gray region). At its lowest point (red dot) the body fires a propellant backwards; however, to a faraway observer both seem to continue to move forward due to frame-dragging (albeit at different speeds). The propellant, being slowed, falls (thin gray line) to the event horizon of the black hole (black disk). And the remains of the body, being sped up, fly away (thin black line) with an excess of energy (that more than offsets the loss of the prope ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Frame-dragging
Frame-dragging is an effect on spacetime, predicted by Albert Einstein's general theory of relativity, that is due to non-static stationary distributions of mass–energy. A stationary field is one that is in a steady state, but the masses causing that field may be non-static ⁠— rotating, for instance. More generally, the subject that deals with the effects caused by mass–energy currents is known as gravitoelectromagnetism, which is analogous to the magnetism of classical electromagnetism. The first frame-dragging effect was derived in 1918, in the framework of general relativity, by the Austrian physicists Josef Lense and Hans Thirring, and is also known as the Lense–Thirring effect. They predicted that the rotation of a massive object would distort the spacetime metric, making the orbit of a nearby test particle precess. This does not happen in Newtonian mechanics for which the gravitational field of a body depends only on its mass, not on its rotation. The L ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Invariant Mass
The invariant mass, rest mass, intrinsic mass, proper mass, or in the case of bound systems simply mass, is the portion of the total mass of an object or system of objects that is independent of the overall motion of the system. More precisely, it is a characteristic of the system's total energy and momentum that is the same in all frames of reference related by Lorentz transformations.Lawrence S. LernerPhysics for Scientists and Engineers, Volume 2, page 1073 1997. If a center-of-momentum frame exists for the system, then the invariant mass of a system is equal to its total mass in that "rest frame". In other reference frames, where the system's momentum is nonzero, the total mass (a.k.a. relativistic mass) of the system is greater than the invariant mass, but the invariant mass remains unchanged. Because of mass–energy equivalence, the rest energy of the system is simply the invariant mass times the speed of light squared. Similarly, the total energy of the system is its to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Blandford–Znajek Process
The Blandford–Znajek process is a mechanism for the extraction of energy from a rotating black hole, introduced by Roger Blandford and Roman Znajek in 1977. This mechanism is the most preferred description of how astrophysical jets are formed around spinning supermassive black holes. This is one of the mechanisms that power quasars, or rapidly accreting supermassive black holes. Generally speaking, it was demonstrated that the power output of the accretion disk is significantly larger than the power output extracted directly from the hole, through its ergosphere. Hence, the presence (or not) of a poloidal magnetic field around the black hole is not determinant in its overall power output. It was also suggested that the mechanism plays a crucial role as a central engine for a gamma-ray burst. Physics of the mechanism As in the Penrose process, the ergosphere plays an important role in the Blandford–Znajek process. In order to extract energy and angular momentum from the black ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hawking Radiation
Hawking radiation is theoretical black body radiation that is theorized to be released outside a black hole's event horizon because of relativistic quantum effects. It is named after the physicist Stephen Hawking, who developed a theoretical argument for its existence in 1974. Hawking radiation is a purely kinematic effect that is generic to Lorentzian geometries containing event horizons or local apparent horizons. Hawking radiation reduces the mass and rotational energy of black holes and is therefore also theorized to cause black hole evaporation. Because of this, black holes that do not gain mass through other means are expected to shrink and ultimately vanish. For all except the smallest black holes, this would happen extremely slowly. The radiation temperature is inversely proportional to the black hole's mass, so micro black holes are predicted to be larger emitters of radiation than larger black holes and should dissipate faster. Overview Black holes are astrophysi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

High Life (2018 Film)
''High Life'' is a 2018 science fiction horror film directed by Claire Denis, in her English-language debut, and written by Denis and her long-time collaborator Jean-Pol Fargeau. Starring Robert Pattinson and Juliette Binoche, it focuses on a group of criminals sent on a space mission toward a black hole while taking part in scientific experiments. Physicist and black hole expert Aurélien Barrau was hired as a consultant, and Danish-Icelandic artist Olafur Eliasson designed the film's spacecraft. ''High Life'' premiered on 9 September 2018 at the Toronto International Film Festival. Plot A group of criminals serving death sentences are sent on a mission in space to extract alternative energy from a black hole. Each prisoner is treated as a guinea pig by Dr. Dibs for her experiments. She is fixated on trying to create a child in space through artificial insemination, but has yet to succeed. Sexual activity between prisoners is prohibited. The ship is equipped with "The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]