HOME





Pseudorandom Binary Sequence
A pseudorandom binary sequence (PRBS), pseudorandom binary code or pseudorandom bitstream is a binary sequence that, while generated with a deterministic algorithm, is difficult to predict and exhibits statistical behavior similar to a truly random sequence. PRBS generators are used in telecommunication, such as in analog-to-information conversion, but also in encryption, simulation, correlation technique and time-of-flight spectroscopy. The most common example is the maximum length sequence generated by a (maximal) linear feedback shift register (LFSR). Other examples are Gold sequences (used in CDMA and GPS), Kasami sequences and JPL sequences, all based on LFSRs. In telecommunications, pseudorandom binary sequences are known as pseudorandom noise codes (PN or PRN codes) due to their application as pseudorandom noise. Details A binary sequence (BS) is a sequence a_0,\ldots, a_ of N bits, i.e. :a_j\in \ for j=0,1,...,N-1. A BS consists of m=\sum a_j ones and N-m zeros. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Binary Sequence
A bitstream (or bit stream), also known as binary sequence, is a sequence of bits. A bytestream is a sequence of bytes. Typically, each byte is an 8-bit quantity, and so the term octet stream is sometimes used interchangeably. An octet may be encoded as a sequence of 8 bits in multiple different ways (see bit numbering) so there is no unique and direct translation between bytestreams and bitstreams. Bitstreams and bytestreams are used extensively in telecommunications and computing. For example, synchronous bitstreams are carried by SONET, and Transmission Control Protocol transports an asynchronous bytestream. Relationship to bytestreams In practice, bitstreams are not used directly to encode bytestreams; a communication channel may use a signalling method that does not directly translate to bits (for instance, by transmitting signals of multiple frequencies) and typically also encodes other information such as framing and error correction together with its data. Exam ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pseudorandomness
A pseudorandom sequence of numbers is one that appears to be statistically random, despite having been produced by a completely deterministic and repeatable process. Pseudorandom number generators are often used in computer programming, as traditional sources of randomness available to humans (such as rolling dice) rely on physical processes not readily available to computer programs, although developments in hardware random number generator technology have challenged this. Background The generation of random numbers has many uses, such as for random sampling, Monte Carlo methods, board games, or gambling. In physics, however, most processes, such as gravitational acceleration, are deterministic, meaning that they always produce the same outcome from the same starting point. Some notable exceptions are radioactive decay and quantum measurement, which are both modeled as being truly random processes in the underlying physics. Since these processes are not practical sources of r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pseudorandom Noise
In cryptography, pseudorandom noise (PRN) is a signal similar to noise which satisfies one or more of the standard tests for statistical randomness. Although it seems to lack any definite pattern, pseudorandom noise consists of a deterministic sequence of pulses that will repeat itself after its period. In cryptographic devices, the pseudorandom noise pattern is determined by a key and the repetition period can be very long, even millions of digits. Pseudorandom noise is used in some electronic musical instruments, either by itself or as an input to subtractive synthesis, and in many white noise machines. In spread-spectrum systems, the receiver correlates a locally generated signal with the received signal. Such spread-spectrum systems require a set of one or more "codes" or "sequences" such that * Like random noise, the local sequence has a very low correlation with any other sequence in the set, or with the same sequence at a significantly different time offset, or wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bit Error Rate Test
In digital transmission, the number of bit errors is the number of received bits of a data stream over a communication channel that have been altered due to noise, interference, distortion or bit synchronization errors. The bit error rate (BER) is the number of bit errors per unit time. The bit error ratio (also BER) is the number of bit errors divided by the total number of transferred bits during a studied time interval. Bit error ratio is a unitless performance measure, often expressed as a percentage. The bit error probability ''pe'' is the expected value of the bit error ratio. The bit error ratio can be considered as an approximate estimate of the bit error probability. This estimate is accurate for a long time interval and a high number of bit errors. Example As an example, assume this transmitted bit sequence: 1 1 0 0 0 1 0 1 1 and the following received bit sequence: 0 1 0 1 0 1 0 0 1, The number of bit errors (the underlined bits) is, in this case, 3. The BER ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complementary Sequences
: ''For complementary sequences in biology, see complementarity (molecular biology). For integer sequences with complementary sets of members see Lambek–Moser theorem.'' In applied mathematics, complementary sequences (CS) are pairs of sequences with the useful property that their out-of-phase aperiodic autocorrelation coefficients sum to zero. Binary complementary sequences were first introduced by Marcel J. E. Golay in 1949. In 1961–1962 Golay gave several methods for constructing sequences of length 2''N'' and gave examples of complementary sequences of lengths 10 and 26. In 1974 R. J. Turyn gave a method for constructing sequences of length ''mn'' from sequences of lengths ''m'' and ''n'' which allows the construction of sequences of any length of the form 2''N''10''K''26''M''. Later the theory of complementary sequences was generalized by other authors to polyphase complementary sequences, multilevel complementary sequences, and arbitrary complex complementary sequences. C ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pseudorandom Number Generator
A pseudorandom number generator (PRNG), also known as a deterministic random bit generator (DRBG), is an algorithm for generating a sequence of numbers whose properties approximate the properties of sequences of random number generation, random numbers. The PRNG-generated sequence is not truly random, because it is completely determined by an initial value, called the PRNG's ''random seed, seed'' (which may include truly random values). Although sequences that are closer to truly random can be generated using hardware random number generators, ''pseudorandom number generators'' are important in practice for their speed in number generation and their reproducibility. PRNGs are central in applications such as simulations (e.g. for the Monte Carlo method), electronic games (e.g. for procedural generation), and cryptography. Cryptographic applications require the output not to be predictable from earlier outputs, and more cryptographically-secure pseudorandom number generator, elabora ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Word (computer Architecture)
In computing, a word is any processor design's natural unit of data. A word is a fixed-sized datum handled as a unit by the instruction set or the hardware of the processor. The number of bits or digits in a word (the ''word size'', ''word width'', or ''word length'') is an important characteristic of any specific processor design or computer architecture. The size of a word is reflected in many aspects of a computer's structure and operation; the majority of the registers in a processor are usually word-sized and the largest datum that can be transferred to and from the working memory in a single operation is a word in many (not all) architectures. The largest possible address size, used to designate a location in memory, is typically a hardware word (here, "hardware word" means the full-sized natural word of the processor, as opposed to any other definition used). Documentation for older computers with fixed word size commonly states memory sizes in words rather than bytes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Monic Polynomial
In algebra, a monic polynomial is a non-zero univariate polynomial (that is, a polynomial in a single variable) in which the leading coefficient (the nonzero coefficient of highest degree) is equal to 1. That is to say, a monic polynomial is one that can be written as :x^n+c_x^+\cdots+c_2x^2+c_1x+c_0, with n \geq 0. Uses Monic polynomials are widely used in algebra and number theory, since they produce many simplifications and they avoid divisions and denominators. Here are some examples. Every polynomial is associated to a unique monic polynomial. In particular, the unique factorization property of polynomials can be stated as: ''Every polynomial can be uniquely factorized as the product of its leading coefficient and a product of monic irreducible polynomials.'' Vieta's formulas are simpler in the case of monic polynomials: ''The th elementary symmetric function of the roots of a monic polynomial of degree equals (-1)^ic_, where c_ is the coefficient of the th po ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Xilinx
Xilinx, Inc. ( ) was an American technology and semiconductor company that primarily supplied programmable logic devices. The company is renowned for inventing the first commercially viable field-programmable gate array (FPGA). It also pioneered the first fabless manufacturing model.Jonathan Cassell, iSuppli.A Forgettable Year for Memory Chip Makers: iSuppli releases preliminary 2008 semiconductor rankings." December 1, 2008. Retrieved January 15, 2009.John Edwards, EDN." June 1, 2006. Retrieved January 15, 2009. Xilinx was co-founded by Ross Freeman, Bernard Vonderschmitt, and James V. Barnett II, James V Barnett II in 1984. The company went public on the Nasdaq in 1990. In October 2020, AMD announced its acquisition of Xilinx, which was completed on February 14, 2022, through an all-stock transaction valued at approximately $60 billion. Xilinx remained a wholly owned subsidiary of AMD until the brand was phased out in June 2023, with Xilinx's product lines now branded under AMD. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Altera
Altera Corporation is a manufacturer of programmable logic devices (PLDs) headquartered in San Jose, California. It was founded in 1983 and acquired by Intel in 2015 before becoming independent once again in 2025 as a company focused on development of Field-Programmable Gate Array (FPGA) technology and system on a chip FPGAs. Early history The company was founded in 1983 by semiconductor veterans Robert Hartmann, Paul Newhagen, James Sansbury, and Michael Magranet with $1,300,000 in seed money. The name of the company was a play on "alterable", the type of chips the company created. The founders selected Rodney Smith to be the company's first CEO. In 1988, Altera became a public company via an initial public offering (IPO). Products FPGAs The main product lines from Altera are the Agilex FPGA product lines, and their predecessors: the high-end Stratix series, mid-range Arria series, and lower-cost Cyclone series; as well as the MAX series non-volatile FPGAs. Semicond ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear-feedback Shift Register
In computing, a linear-feedback shift register (LFSR) is a shift register whose input bit is a Linear#Boolean functions, linear function of its previous state. The most commonly used linear function of single bits is exclusive-or (XOR). Thus, an LFSR is most often a shift register whose input bit is driven by the XOR of some bits of the overall shift register value. The initial value of the LFSR is called the seed, and because the operation of the register is deterministic, the stream of values produced by the register is completely determined by its current (or previous) state. Likewise, because the register has a finite number of possible states, it must eventually enter a repeating cycle. However, an LFSR with a Primitive polynomial (field theory), well-chosen feedback function can produce a sequence of bits that appears random and has a Maximal length sequence, very long cycle. Applications of LFSRs include generating Pseudorandomness, pseudo-random numbers, Pseudorandom n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

White Noise
In signal processing, white noise is a random signal having equal intensity at different frequencies, giving it a constant power spectral density. The term is used with this or similar meanings in many scientific and technical disciplines, including physics, acoustical engineering, telecommunications, and statistical forecasting. White noise refers to a statistical model for signals and signal sources, not to any specific signal. White noise draws its name from white light, although light that appears white generally does not have a flat power spectral density over the visible band. In discrete time, white noise is a discrete signal whose samples are regarded as a sequence of serially uncorrelated random variables with zero mean and finite variance; a single realization of white noise is a random shock. In some contexts, it is also required that the samples be independent and have identical probability distribution (in other words independent and identically distribu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]