Out(Fn)
In mathematics, Out(''Fn'') is the outer automorphism group of a free group on ''n'' generators. These groups are at universal stage in geometric group theory, as they act on the set of presentations with n generators of any finitely generated group. Despite geometric analogies with general linear groups and mapping class groups, their complexity is generally regarded as more challenging, which has fueled the development of new techniques in the field. Definition Let F_n be the free nonabelian group of rank n \ge 1. The set of inner automorphisms of F_n, i.e. automorphisms obtained as conjugations by an element of F_n, is a normal subgroup \mathrm(F_n) \triangleleft \mathrm(F_n). The outer automorphism group of F_n is the quotient\mathrm(F_n) := \mathrm(F_n)/\mathrm(F_n).An element of \mathrm(F_n) is called an outer class. Relations to other groups Linear groups The abelianization map F_n \to \Z^n induces a homomorphism from \mathrm(F_n) to the general linear group \math ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Outer Automorphism Group
In mathematics, the outer automorphism group of a group, , is the quotient, , where is the automorphism group of and ) is the subgroup consisting of inner automorphisms. The outer automorphism group is usually denoted . If is trivial and has a trivial center, then is said to be complete. An automorphism of a group that is not inner is called an outer automorphism. The cosets of with respect to outer automorphisms are then the elements of ; this is an instance of the fact that quotients of groups are not, in general, (isomorphic to) subgroups. If the inner automorphism group is trivial (when a group is abelian), the automorphism group and outer automorphism group are naturally identified; that is, the outer automorphism group does act on the group. For example, for the alternating group, , the outer automorphism group is usually the group of order 2, with exceptions noted below. Considering as a subgroup of the symmetric group, , conjugation by any odd permutation is a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Geometric Group Theory
Geometric group theory is an area in mathematics devoted to the study of finitely generated groups via exploring the connections between algebraic properties of such groups and topological and geometric properties of spaces on which these groups can act non-trivially (that is, when the groups in question are realized as geometric symmetries or continuous transformations of some spaces). Another important idea in geometric group theory is to consider finitely generated groups themselves as geometric objects. This is usually done by studying the Cayley graphs of groups, which, in addition to the graph structure, are endowed with the structure of a metric space, given by the so-called word metric. Geometric group theory, as a distinct area, is relatively new, and became a clearly identifiable branch of mathematics in the late 1980s and early 1990s. Geometric group theory closely interacts with low-dimensional topology, hyperbolic geometry, algebraic topology, computational group ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tits Alternative
In mathematics, the Tits alternative, named after Jacques Tits, is an important theorem about the structure of finitely generated linear groups. Statement The theorem, proven by Tits, is stated as follows. Consequences A linear group is not amenable if and only if it contains a non-abelian free group (thus the von Neumann conjecture, while not true in general, holds for linear groups). The Tits alternative is an important ingredient in the proof of Gromov's theorem on groups of polynomial growth. In fact the alternative essentially establishes the result for linear groups (it reduces it to the case of solvable groups, which can be dealt with by elementary means). Generalizations In geometric group theory, a group ''G'' is said to satisfy the Tits alternative if for every subgroup ''H'' of ''G'' either ''H'' is virtually solvable or ''H'' contains a nonabelian free subgroup (in some versions of the definition this condition is only required to be satisfied for all finite ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mapping Class Group Of A Surface
In mathematics, and more precisely in topology, the mapping class group of a surface, sometimes called the modular group or Teichmüller modular group, is the group of homeomorphisms of the surface viewed up to continuous (in the compact-open topology) deformation. It is of fundamental importance for the study of 3-manifolds via their embedded surfaces and is also studied in algebraic geometry in relation to moduli problems for curves. The mapping class group can be defined for arbitrary manifolds (indeed, for arbitrary topological spaces) but the 2-dimensional setting is the most studied in group theory. The mapping class group of surfaces are related to various other groups, in particular braid groups and outer automorphism groups. History The mapping class group appeared in the first half of the twentieth century. Its origins lie in the study of the topology of hyperbolic surfaces, and especially in the study of the intersections of closed curves on these surfaces. The earli ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Free Abelian Group
In mathematics, a free abelian group is an abelian group with a Free module, basis. Being an abelian group means that it is a Set (mathematics), set with an addition operation (mathematics), operation that is associative, commutative, and invertible. A basis, also called an integral basis, is a subset such that every element of the group (mathematics), group can be uniquely expressed as an integer linear combination, combination of finitely many basis elements. For instance, the two-dimensional integer lattice forms a free abelian group, with coordinatewise addition as its operation, and with the two points (1, 0) and (0, 1) as its basis. Free abelian groups have properties which make them similar to vector spaces, and may equivalently be called free the free modules over the integers. Lattice (group), Lattice theory studies free abelian subgroups of real number, real vector spaces. In algebraic topology, free abelian groups are used to define Chain (algebraic topology), chain gro ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Solvable Group
In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminates in the trivial subgroup. Motivation Historically, the word "solvable" arose from Galois theory and the proof of the general unsolvability of quintic equations. Specifically, a polynomial equation is solvable in radicals if and only if the corresponding Galois group is solvable (note this theorem holds only in characteristic 0). This means associated to a polynomial f \in F /math> there is a tower of field extensionsF = F_0 \subseteq F_1 \subseteq F_2 \subseteq \cdots \subseteq F_m=Ksuch that # F_i = F_ alpha_i/math> where \alpha_i^ \in F_, so \alpha_i is a solution to the equation x^ - a where a \in F_ # F_m contains a splitting field for f(x) Example The smallest Galois field extension of \mathbb containing the elementa = \sqr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Virtually
In mathematics, especially in the area of abstract algebra that studies infinite groups, the adverb virtually is used to modify a property so that it need only hold for a subgroup of finite index. Given a property P, the group ''G'' is said to be ''virtually P'' if there is a finite index subgroup H \le G such that ''H'' has property P. Common uses for this would be when P is abelian, nilpotent, solvable or free. For example, virtually solvable groups are one of the two alternatives in the Tits alternative, while Gromov's theorem states that the finitely generated groups with polynomial growth are precisely the finitely generated virtually nilpotent groups. This terminology is also used when P is just another group. That is, if ''G'' and ''H'' are groups then ''G'' is ''virtually'' ''H'' if ''G'' has a subgroup ''K'' of finite index in ''G'' such that ''K'' is isomorphic to ''H''. In particular, a group is virtually trivial if and only if it is finite. Two groups are vir ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Group Cohomology
In mathematics (more specifically, in homological algebra), group cohomology is a set of mathematical tools used to study groups using cohomology theory, a technique from algebraic topology. Analogous to group representations, group cohomology looks at the group actions of a group ''G'' in an associated ''G''-module ''M'' to elucidate the properties of the group. By treating the ''G''-module as a kind of topological space with elements of G^n representing ''n''- simplices, topological properties of the space may be computed, such as the set of cohomology groups H^n(G,M). The cohomology groups in turn provide insight into the structure of the group ''G'' and ''G''-module ''M'' themselves. Group cohomology plays a role in the investigation of fixed points of a group action in a module or space and the quotient module or space with respect to a group action. Group cohomology is used in the fields of abstract algebra, homological algebra, algebraic topology and algebraic number th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Center (group Theory)
In abstract algebra, the center of a group (mathematics), group is the set (mathematics), set of elements that commutative, commute with every element of . It is denoted , from German ''wikt:Zentrum, Zentrum,'' meaning ''center''. In set-builder notation, :. The center is a normal subgroup, Z(G)\triangleleft G, and also a characteristic subgroup, characteristic subgroup, but is not necessarily fully characteristic subgroup, fully characteristic. The quotient group, , is group isomorphism, isomorphic to the inner automorphism group, . A group is abelian if and only if . At the other extreme, a group is said to be centerless if is trivial group, trivial; i.e., consists only of the identity element. The elements of the center are central elements. As a subgroup The center of ''G'' is always a subgroup (mathematics), subgroup of . In particular: # contains the identity element of , because it commutes with every element of , by definition: , where is the identity; # If an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dehn Function
In the mathematical subject of geometric group theory, a Dehn function, named after Max Dehn, is an optimal function associated to a finite group presentation which bounds the ''area'' of a ''relation'' in that group (that is a freely reduced word in the generators representing the identity element of the group) in terms of the length of that relation (see pp. 79–80 in ). The growth type of the Dehn function is a quasi-isometry invariant of a finitely presented group. The Dehn function of a finitely presented group is also closely connected with non-deterministic algorithmic complexity of the word problem in groups. In particular, a finitely presented group has solvable word problem if and only if the Dehn function for a finite presentation of this group is recursive (see Theorem 2.1 in ). The notion of a Dehn function is motivated by isoperimetric problems in geometry, such as the classic isoperimetric inequality for the Euclidean plane and, more generally, the no ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Faithful Representation
In mathematics, especially in an area of abstract algebra known as representation theory, a faithful representation ρ of a group (mathematics), group on a vector space is a linear representation in which different elements of are represented by distinct linear mappings . In more abstract language, this means that the group homomorphism \rho: G\to GL(V) is injective (or injective, one-to-one). Caveat While representations of over a field (mathematics), field are ''de facto'' the same as -module (mathematics), modules (with denoting the Group ring#Group algebra over a finite group, group algebra of the group ), a faithful representation of is not necessarily a faithful module for the group algebra. In fact each faithful -module is a faithful representation of , but the converse (logic), converse does not hold. Consider for example the natural representation of the symmetric group in dimensions by permutation matrices, which is certainly faithful. Here the order of a group, o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Surface (mathematics)
In mathematics, a surface is a mathematical model of the common concept of a surface. It is a generalization of a plane, but, unlike a plane, it may be curved; this is analogous to a curve generalizing a straight line. There are several more precise definitions, depending on the context and the mathematical tools that are used for the study. The simplest mathematical surfaces are planes and spheres in the Euclidean 3-space. The exact definition of a surface may depend on the context. Typically, in algebraic geometry, a surface may cross itself (and may have other singularities), while, in topology and differential geometry, it may not. A surface is a topological space of dimension two; this means that a moving point on a surface may move in two directions (it has two degrees of freedom). In other words, around almost every point, there is a '' coordinate patch'' on which a two-dimensional coordinate system is defined. For example, the surface of the Earth resembles ( ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |