HOME
*





Ostwald–Freundlich Equation
The Ostwald–Freundlich equation governs boundaries between two phases; specifically, it relates the surface tension of the boundary to its curvature, the ambient temperature, and the vapor pressure or chemical potential in the two phases. The Ostwald–Freundlich equation for a droplet or particle with radius R is: :\frac = \exp :R_ = \frac : V_ = atomic volume : k_ = Boltzmann constant : \gamma = surface tension (J \cdot m−2) : p_ = equilibrium partial pressure (or chemical potential or concentration) : p = partial pressure (or chemical potential or concentration) : T = absolute temperature One consequence of this relation is that small liquid droplets (i.e., particles with a high surface curvature) exhibit a higher effective vapor pressure, since the surface is larger in comparison to the volume. Another notable example of this relation is Ostwald ripening, in which surface tension causes small precipitates to dissolve and larger ones to grow. Ostwald ripe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Phase (matter)
In the physical sciences, a phase is a region of space (a thermodynamic system), throughout which all physical properties of a material are essentially uniform. Examples of physical properties include density, index of refraction, magnetization and chemical composition. A simple description is that a phase is a region of material that is chemically uniform, physically distinct, and (often) mechanically separable. In a system consisting of ice and water in a glass jar, the ice cubes are one phase, the water is a second phase, and the humid air is a third phase over the ice and water. The glass of the jar is another separate phase. (See ) The term ''phase'' is sometimes used as a synonym for state of matter, but there can be several immiscible phases of the same state of matter. Also, the term ''phase'' is sometimes used to refer to a set of equilibrium states demarcated in terms of state variables such as pressure and temperature by a phase boundary on a phase diagram. Beca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hermann Von Helmholtz
Hermann Ludwig Ferdinand von Helmholtz (31 August 1821 – 8 September 1894) was a German physicist and physician who made significant contributions in several scientific fields, particularly hydrodynamic stability. The Helmholtz Association, the largest German association of research institutions, is named in his honor. In the fields of physiology and psychology, Helmholtz is known for his mathematics concerning the eye, theories of vision, ideas on the visual perception of space, color vision research, the sensation of tone, perceptions of sound, and empiricism in the physiology of perception. In physics, he is known for his theories on the conservation of energy, work in electrodynamics, chemical thermodynamics, and on a mechanical foundation of thermodynamics. As a philosopher, he is known for his philosophy of science, ideas on the relation between the laws of perception and the laws of nature, the science of aesthetics, and ideas on the civilizing power o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Thermodynamic Equations
Thermodynamics is expressed by a mathematical framework of ''thermodynamic equations'' which relate various thermodynamic quantities and physical properties measured in a laboratory or production process. Thermodynamics is based on a fundamental set of postulates, that became the laws of thermodynamics. Introduction One of the fundamental thermodynamic equations is the description of thermodynamic work in analogy to mechanical work, or weight lifted through an elevation against gravity, as defined in 1824 by French physicist Sadi Carnot. Carnot used the phrase motive power for work. In the footnotes to his famous ''On the Motive Power of Fire'', he states: “We use here the expression ''motive power'' to express the useful effect that a motor is capable of producing. This effect can always be likened to the elevation of a weight to a certain height. It has, as we know, as a measure, the product of the weight multiplied by the height to which it is raised.” With the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kelvin Equation
The Kelvin equation describes the change in vapour pressure due to a curved liquid–vapor interface, such as the surface of a droplet. The vapor pressure at a convex curved surface is higher than that at a flat surface. The Kelvin equation is dependent upon thermodynamic principles and does not allude to special properties of materials. It is also used for determination of pore size distribution of a porous medium using adsorption porosimetry. The equation is named in honor of William Thomson, also known as Lord Kelvin. Formulation The original form of the Kelvin equation, published in 1871, is: p(r_1 , r_2) = P - \frac \left ( \frac + \frac \right ), where: * p(r) = vapor pressure at a curved interface of radius r * P = vapor pressure at flat interface ( r = \infty ) = p_ * \gamma = surface tension * \rho _ = density of vapor * \rho _ = density of liquid * r_1 , r_2 = radii of curvature along the principal sections of the curved interface. This may ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Köhler Theory
Köhler theory describes the process in which water vapor condenses and forms liquid cloud drops, and is based on equilibrium thermodynamics. It combines the Kelvin effect, which describes the change in saturation vapor pressure due to a curved surface, and Raoult's Law, which relates the saturation vapor pressure to the solute. It is an important process in the field of cloud physics. It was initially published in 1936 by Hilding Köhler, Professor of Meteorology in the Uppsala University. Köhler equation: \ln \left ( \frac \right ) = \frac - \frac where p_w is the droplet water vapor pressure, p^0 is the corresponding saturation vapor pressure over a flat surface, \sigma_w is the droplet surface tension, \rho_w is the density of pure water, n_s is the moles of solute, M_w is the molecular weight of water, and D_p is the cloud drop diameter. Köhler curve The Köhler curve is the visual representation of the Köhler equation. It shows the supersaturation at which the cloud ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gas Constant
The molar gas constant (also known as the gas constant, universal gas constant, or ideal gas constant) is denoted by the symbol or . It is the molar equivalent to the Boltzmann constant, expressed in units of energy per temperature increment per amount of substance, i.e. the pressure–volume product, rather than energy per temperature increment per ''particle''. The constant is also a combination of the constants from Boyle's law, Charles's law, Avogadro's law, and Gay-Lussac's law. It is a physical constant that is featured in many fundamental equations in the physical sciences, such as the ideal gas law, the Arrhenius equation, and the Nernst equation. The gas constant is the constant of proportionality that relates the energy scale in physics to the temperature scale and the scale used for amount of substance. Thus, the value of the gas constant ultimately derives from historical decisions and accidents in the setting of units of energy, temperature and amount of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Avogadro Constant
The Avogadro constant, commonly denoted or , is the proportionality factor that relates the number of constituent particles (usually molecules, atoms or ions) in a sample with the amount of substance in that sample. It is an SI defining constant with an exact value of . It is named after the Italian scientist Amedeo Avogadro by Stanislao Cannizzaro, who explained this number four years after Avogadro's death while at the Karlsruhe Congress in 1860. The numeric value of the Avogadro constant expressed in reciprocal moles, a dimensionless number, is called the Avogadro number. In older literature, the Avogadro number is denoted or , which is the number of particles that are contained in one mole, exactly . The Avogadro number is the approximate number of nucleons ( protons or neutrons) in one gram of ordinary matter. The value of the Avogadro constant was chosen so that the mass of one mole of a chemical compound, in grams, is approximately the number of nucleons in one ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mole (unit)
The mole, symbol mol, is the unit of amount of substance in the International System of Units (SI). The quantity amount of substance is a measure of how many elementary entities of a given substance are in an object or sample. The mole is defined as containing exactly elementary entities. Depending on what the substance is, an elementary entity may be an atom, a molecule, an ion, an ion pair, or a subatomic particle such as an electron. For example, 10 moles of water (a chemical compound) and 10 moles of mercury (a chemical element), contain equal amounts of substance and the mercury contains exactly one atom for each molecule of the water, despite the two having different volumes and different masses. The number of elementary entities in one mole is known as the Avogadro number, which is the approximate number of nucleons ( protons or neutrons) in one gram of ordinary matter. The previous definition of a mole was simply the number of elementary entities equal to that of 1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Molar Mass
In chemistry, the molar mass of a chemical compound is defined as the mass of a sample of that compound divided by the amount of substance which is the number of moles in that sample, measured in moles. The molar mass is a bulk, not molecular, property of a substance. The molar mass is an ''average'' of many instances of the compound, which often vary in mass due to the presence of isotopes. Most commonly, the molar mass is computed from the standard atomic weights and is thus a terrestrial average and a function of the relative abundance of the isotopes of the constituent atoms on Earth. The molar mass is appropriate for converting between the mass of a substance and the amount of a substance for bulk quantities. The molecular mass and formula mass are commonly used as a synonym of molar mass, particularly for molecular compounds; however, the most authoritative sources define it differently. The difference is that molecular mass is the mass of one specific particle or m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ideal Gas Law
The ideal gas law, also called the general gas equation, is the equation of state of a hypothetical ideal gas. It is a good approximation of the behavior of many gases under many conditions, although it has several limitations. It was first stated by Benoît Paul Émile Clapeyron in 1834 as a combination of the empirical Boyle's law, Charles's law, Avogadro's law, and Gay-Lussac's law. The ideal gas law is often written in an empirical form: pV = nRT where p, V and T are the pressure, volume and temperature; n is the amount of substance; and R is the ideal gas constant. It can also be derived from the microscopic kinetic theory, as was achieved (apparently independently) by August Krönig in 1856 and Rudolf Clausius in 1857. Equation The state of an amount of gas is determined by its pressure, volume, and temperature. The modern form of the equation relates these simply in two main forms. The temperature used in the equation of state is an absolute temperature: the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Akademische Verlagsgesellschaft
The (AVG, AVg, Aka, AV; English: Academic publishing company) in Leipzig was an important German academic publisher, which was founded in 1906. The original Jewish owners of the publishing house and key employees were expropriated during the time of the Nazi regime, emigrated and founded new scientific publishing houses in other countries. The publishing house was then named . After World War II, in the German Democratic Republic (GDR/DDR) the Leipzig branch of the publishing house was transformed into in 1947 and 1951. This was dissolved in 1991 as a consequence of the German reunification. Between 1953 and 1983, another seeing itself as the legal successor of the original company existed in the Federal Republic of Germany (FRG/BRD) in Frankfurt am Main and Wiesbaden. Today, there are two German publishing houses claiming to stand in the tradition of the , AULA-Verlag and AKA-Verlag, although legally they are new and independent foundations. History founded an antiquar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Herbert Freundlich
Herbert Max Finlay Freundlich (28 January 1880 in Charlottenburg – 30 March 1941 in Minneapolis) was a German chemist. His father was of German Jewish descent, and his mother ( Finlay) was from Scotland. His younger brother was Erwin Finlay Freundlich (1885–1964). He was a department head at the Kaiser Wilhelm Institute for Physical Chemistry and Electrochemistry (now the Fritz Haber Institute) from 1919 until 1933, when the racial policies of the Nazi party demanded the dismissal of non-Aryans from senior posts. In 1934 he became a foreign member of the Royal Netherlands Academy of Arts and Sciences. Emigrating to England, Freundlich accepted a guest professorship at University College London. Five years later, he accepted a professorship at the University of Minnesota. He died in Minneapolis two years later. Freundlich's main works dealt with the coagulation and stability of colloidal solutions. His most prominent student was Robert Havemann who became a w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]