HOME



picture info

Order Type
In mathematics, especially in set theory, two ordered sets and are said to have the same order type if they are order isomorphic, that is, if there exists a bijection (each element pairs with exactly one in the other set) f\colon X \to Y such that both and its inverse are monotonic (preserving orders of elements). In the special case when is totally ordered, monotonicity of already implies monotonicity of its inverse. One and the same set may be equipped with different orders. Since order-equivalence is an equivalence relation, it partitions the class of all ordered sets into equivalence classes. Notation If a set X has order type denoted \sigma, the order type of the reversed order, the dual of X, is denoted \sigma^. The order type of a well-ordered set is sometimes expressed as . Examples The order type of the integers and rationals is usually denoted \pi and \eta, respectively. The set of integers and the set of even integers have the same order type, becaus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ordered Type System
Substructural type systems are a family of type systems analogous to substructural logics where one or more of the structural rules are absent or only allowed under controlled circumstances. Such systems can constrain access to system resources such as files, locks, and memory by keeping track of changes of state and prohibiting invalid states. Different substructural type systems Several type systems have emerged by discarding some of the structural rules of exchange, weakening, and contraction: *''Ordered type systems'' (discard exchange, weakening and contraction): Every variable is used exactly once in the order it was introduced. *''Linear type systems'' (allow exchange, but neither weakening nor contraction): Every variable is used exactly once. *''Affine type systems'' (allow exchange and weakening, but not contraction): Every variable is used at most once. *''Relevant type systems'' (allow exchange and contraction, but not weakening): Every variable is used at least ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parity (mathematics)
In mathematics, parity is the Property (mathematics), property of an integer of whether it is even or odd. An integer is even if it is divisible by 2, and odd if it is not.. For example, −4, 0, and 82 are even numbers, while −3, 5, 23, and 69 are odd numbers. The above definition of parity applies only to integer numbers, hence it cannot be applied to numbers with decimals or fractions like 1/2 or 4.6978. See the section "Higher mathematics" below for some extensions of the notion of parity to a larger class of "numbers" or in other more general settings. Even and odd numbers have opposite parities, e.g., 22 (even number) and 13 (odd number) have opposite parities. In particular, the parity of zero is even. Any two consecutive integers have opposite parity. A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. That is, if the last digit is 1, 3, 5, 7, or 9, then it is odd; otherwise it is even—as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dense Order
In mathematics, a partial order or total order < on a X is said to be dense if, for all x and y in X for which x < y, there is a z in X such that x < z < y. That is, for any two elements, one less than the other, there is another element between them. For total orders this can be simplified to "for any two distinct elements, there is another element between them", since all elements of a total order are comparable.


Example

The s as a linearly ordered set are a densely ordered set in this sense, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Completeness Of The Real Numbers
Completeness is a property of the real numbers that, intuitively, implies that there are no "gaps" (in Dedekind's terminology) or "missing points" in the real number line. This contrasts with the rational numbers, whose corresponding number line has a "gap" at each irrational value. In the decimal number system, completeness is equivalent to the statement that any infinite string of decimal digits is actually a decimal representation for some real number. Depending on the construction of the real numbers used, completeness may take the form of an axiom (the completeness axiom), or may be a theorem proven from the construction. There are many equivalent forms of completeness, the most prominent being Dedekind completeness and Cauchy completeness ( completeness as a metric space). Forms of completeness The real numbers can be defined synthetically as an ordered field satisfying some version of the ''completeness axiom''. Different versions of this axiom are all equivalent ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Even Ordinal
Even may refer to: General * Even (given name), a Norwegian male personal name * Even (surname), a Breton surname * Even (people), an ethnic group from Siberia and Russian Far East **Even language, a language spoken by the Evens * Odd and Even, a solitaire game which is played with two decks of playing cards *Evening, the period of a day that begins at the end of daylight and overlaps with the beginning of night Science and technology *In mathematics, the term ''even'' is used in several senses related to ''odd'': ** even and odd numbers, an integer is even if dividing by two yields an integer ** even and odd functions, a function is even if ''f''(−''x'') = ''f''(''x'') for all ''x'' ** even and odd permutations, a permutation of a finite set is even if it is composed of an even number of transpositions **Singly even number, an integer divisible by 2 but not divisible by 4 * Even code, if the Hamming weight of all of a binary code's codewords is even Entertainment *E ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Non-standard Model Of Arithmetic
In mathematical logic, a non-standard model of arithmetic is a model of first-order Peano arithmetic that contains non-standard numbers. The term standard model of arithmetic refers to the standard natural numbers 0, 1, 2, …. The elements of any model of Peano arithmetic are linearly ordered and possess an initial segment isomorphic to the standard natural numbers. A non-standard model is one that has additional elements outside this initial segment. The construction of such models is due to Thoralf Skolem (1934). Non-standard models of arithmetic exist only for the first-order formulation of the Peano axioms; for the original second-order formulation, there is, up to isomorphism, only one model: the natural numbers themselves. Existence There are several methods that can be used to prove the existence of non-standard models of arithmetic. From the compactness theorem The existence of non-standard models of arithmetic can be demonstrated by an application of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Peano Arithmetic
In mathematical logic, the Peano axioms (, ), also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th-century Italian mathematician Giuseppe Peano. These axioms have been used nearly unchanged in a number of metamathematical investigations, including research into fundamental questions of whether number theory is consistent and complete. The axiomatization of arithmetic provided by Peano axioms is commonly called Peano arithmetic. The importance of formalizing arithmetic was not well appreciated until the work of Hermann Grassmann, who showed in the 1860s that many facts in arithmetic could be derived from more basic facts about the successor operation and induction. In 1881, Charles Sanders Peirce provided an axiomatization of natural-number arithmetic. In 1888, Richard Dedekind proposed another axiomatization of natural-number arithmetic, and in 1889, Peano published a simplified version of them a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

ω (ordinal Number)
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least natural number that has not been previously used. To extend this process to various infinite sets, ordinal numbers are defined more generally using linearly ordered greek letter variables that include the natural numbers and have the property that every set of ordinals has a least or "smallest" element (this is needed for giving a meaning to "the least unused element"). This more general definition allows us to define an ordinal number \omega (omega) to be the least element that is greater than every natural number, along with ordinal numbers , , etc., which are even greater than . A linear order such that every non-empty subset has a least element is called a well-order. The axiom of choice implies that every set can be well-ordered, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Canonical Form
In mathematics and computer science, a canonical, normal, or standard form of a mathematical object is a standard way of presenting that object as a mathematical expression. Often, it is one which provides the simplest representation of an object and allows it to be identified in a unique way. The distinction between "canonical" and "normal" forms varies from subfield to subfield. In most fields, a canonical form specifies a ''unique'' representation for every object, while a normal form simply specifies its form, without the requirement of uniqueness. The canonical form of a positive integer in decimal representation is a finite sequence of digits that does not begin with zero. More generally, for a class of objects on which an equivalence relation is defined, a canonical form consists in the choice of a specific object in each class. For example: *Jordan normal form is a canonical form for matrix similarity. *The row echelon form is a canonical form, when one considers as equ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ordinal Number (mathematics)
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least natural number that has not been previously used. To extend this process to various infinite sets, ordinal numbers are defined more generally using linearly ordered greek letter variables that include the natural numbers and have the property that every set of ordinals has a least or "smallest" element (this is needed for giving a meaning to "the least unused element"). This more general definition allows us to define an ordinal number \omega (omega) to be the least element that is greater than every natural number, along with ordinal numbers , , etc., which are even greater than . A linear order such that every non-empty subset has a least element is called a well-order. The axiom of choice implies that every set can be well-ordered, an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Well-ordered Set
In mathematics, a well-order (or well-ordering or well-order relation) on a set is a total ordering on with the property that every non-empty subset of has a least element in this ordering. The set together with the ordering is then called a well-ordered set (or woset). In some academic articles and textbooks these terms are instead written as wellorder, wellordered, and wellordering or well order, well ordered, and well ordering. Every non-empty well-ordered set has a least element. Every element of a well-ordered set, except a possible greatest element, has a unique successor (next element), namely the least element of the subset of all elements greater than . There may be elements, besides the least element, that have no predecessor (see below for an example). A well-ordered set contains for every subset with an upper bound a least upper bound, namely the least element of the subset of all upper bounds of in . If ≤ is a non-strict well ordering, then < is a stric ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]