HOME





Normal Operator
In mathematics, especially functional analysis, a normal operator on a complex number, complex Hilbert space H is a continuous function (topology), continuous linear operator N\colon H\rightarrow H that commutator, commutes with its Hermitian adjoint N^, that is: N^N = NN^. Normal operators are important because the spectral theorem holds for them. The class of normal operators is well understood. Examples of normal operators are * unitary operators: U^ = U^ * Hermitian operators (i.e., self-adjoint operators): N^ = N * skew-Hermitian operators: N^ = -N * positive operators: N = M^M for some M (so ''N'' is self-adjoint). A normal matrix is the matrix expression of a normal operator on the Hilbert space \mathbb^. Properties Normal operators are characterized by the spectral theorem. A Compact operator on Hilbert space, compact normal operator (in particular, a normal operator on a dimension (vector space), finite-dimensional inner product space) is unitarily diagonalizable. Let ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bilateral Shift
In mathematics, and in particular functional analysis, the shift operator, also known as the translation operator, is an operator that takes a function to its translation . In time series analysis, the shift operator is called the '' lag operator''. Shift operators are examples of linear operators, important for their simplicity and natural occurrence. The shift operator action on functions of a real variable plays an important role in harmonic analysis, for example, it appears in the definitions of almost periodic functions, positive-definite functions, derivatives, and convolution. Shifts of sequences (functions of an integer variable) appear in diverse areas such as Hardy spaces, the theory of abelian varieties, and the theory of symbolic dynamics, for which the baker's map is an explicit representation. The notion of triangulated category is a categorified analogue of the shift operator. Definition Functions of a real variable The shift operator (where ) takes a fu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Archiv Der Mathematik
'' Archiv der Mathematik'' is a peer-reviewed mathematics journal published by Springer, established in 1948. Abstracting and indexing The journal is abstracted and indexed in:
Springer. 2022
* * * * According to the ''

Trace (linear Algebra)
In linear algebra, the trace of a square matrix , denoted , is the sum of the elements on its main diagonal, a_ + a_ + \dots + a_. It is only defined for a square matrix (). The trace of a matrix is the sum of its eigenvalues (counted with multiplicities). Also, for any matrices and of the same size. Thus, similar matrices have the same trace. As a consequence, one can define the trace of a linear operator mapping a finite-dimensional vector space into itself, since all matrices describing such an operator with respect to a basis are similar. The trace is related to the derivative of the determinant (see Jacobi's formula). Definition The trace of an square matrix is defined as \operatorname(\mathbf) = \sum_^n a_ = a_ + a_ + \dots + a_ where denotes the entry on the row and column of . The entries of can be real numbers, complex numbers, or more generally elements of a field . The trace is not defined for non-square matrices. Example Let be a matrix, with \m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inner Product
In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often denoted with angle brackets such as in \langle a, b \rangle. Inner products allow formal definitions of intuitive geometric notions, such as lengths, angles, and orthogonality (zero inner product) of vectors. Inner product spaces generalize Euclidean vector spaces, in which the inner product is the dot product or ''scalar product'' of Cartesian coordinates. Inner product spaces of infinite dimension are widely used in functional analysis. Inner product spaces over the field of complex numbers are sometimes referred to as unitary spaces. The first usage of the concept of a vector space with an inner product is due to Giuseppe Peano, in 1898. An inner product naturally induces an associated norm, (denoted , x, and , y, in the pictu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Aluthge Transform
In mathematics and more precisely in functional analysis, the Aluthge transformation is an operation defined on the set of bounded operators of a Hilbert space. It was introduced by Ariyadasa Aluthge to study p-hyponormal linear operators. Definition Let H be a Hilbert space and let B(H) be the algebra of linear operators from H to H. By the polar decomposition theorem, there exists a unique partial isometry Partial may refer to: Mathematics *Partial derivative, derivative with respect to one of several variables of a function, with the other variables held constant ** ∂, a symbol that can denote a partial derivative, sometimes pronounced "partial ... U such that T=U, T, and \ker(U)\supset\ker(T), where , T, is the square root of the operator T^*T. If T\in B(H) and T=U, T, is its polar decomposition, the Aluthge transform of T is the operator \Delta(T) defined as: : \Delta(T)=, T, ^U, T, ^. More generally, for any real number \lambda\in ,1/math>, the \lam ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spectral Radius
''Spectral'' is a 2016 Hungarian-American military science fiction action film co-written and directed by Nic Mathieu. Written with Ian Fried (screenwriter), Ian Fried & George Nolfi, the film stars James Badge Dale as DARPA research scientist Mark Clyne, with Max Martini, Emily Mortimer, Clayne Crawford, and Bruce Greenwood in supporting roles. The film is set in a civil war-ridden Moldova as invisible entities slaughter any living being caught in their path. The film was released worldwide on December 9, 2016 on Netflix. On February 1, 2017, Netflix released a prequel graphic novel of the film called ''Spectral: Ghosts of War'' which was made available digitally through the website ComiXology. Plot DARPA researcher Mark Clyne is sent to a United States, US United States Armed Forces, military Air base, airbase on the outskirts of Chișinău, to consult his created line of hyperspectral imaging goggles issued to United States Army, US Army United States Army Special Forces, S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Numerical Radius
Numerical may refer to: * Number * Numerical digit * Numerical analysis Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic computation, symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of ...
{{disambig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fuglede's Theorem
In mathematics, Fuglede's theorem is a result in operator theory, named after Bent Fuglede. The result Theorem (Fuglede) Let ''T'' and ''N'' be bounded operators on a complex Hilbert space with ''N'' being normal. If ''TN'' = ''NT'', then ''TN*'' = ''N*T'', where ''N*'' denotes the adjoint of ''N''. Normality of ''N'' is necessary, as is seen by taking ''T''=''N''. When ''T'' is self-adjoint, the claim is trivial regardless of whether ''N'' is normal: TN^* = (NT)^* = (TN)^* = N^*T. Tentative Proof: If the underlying Hilbert space is finite-dimensional, the spectral theorem says that ''N'' is of the form N = \sum_i \lambda_i P_i where ''Pi'' are pairwise orthogonal projections. One expects that ''TN'' = ''NT'' if and only if ''TPi'' = ''PiT''. Indeed, it can be proved to be true by elementary arguments (e.g. it can be shown that all ''Pi'' are representable as polynomials of ''N'' and for this reason, if ''T'' commutes with ''N'', it has to commute with ''Pi''...). Therefore ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]