HOME





Normal Function
In axiomatic set theory, a function is called normal (or a normal function) if it is continuous (with respect to the order topology) and strictly monotonically increasing. This is equivalent to the following two conditions: # For every limit ordinal (i.e. is neither zero nor a successor), it is the case that . # For all ordinals , it is the case that . Examples A simple normal function is given by (see ordinal arithmetic). But is ''not'' normal because it is not continuous at any limit ordinal (for example, f(\omega) = \omega+1 \ne \omega = \sup \). If is a fixed ordinal, then the functions , (for ), and (for ) are all normal. More important examples of normal functions are given by the aleph numbers f(\alpha) = \aleph_\alpha, which connect ordinal and cardinal numbers, and by the beth numbers f(\alpha) = \beth_\alpha. Properties If is normal, then for any ordinal , :. Proof: If not, choose minimal such that . Since is strictly monotonically increasing, , contr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Axiomatic Set Theory
Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of ''naive set theory''. After the discovery of Paradoxes of set theory, paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox), various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Aleph Number
In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality (or size) of infinite sets. They were introduced by the mathematician Georg Cantor and are named after the symbol he used to denote them, the Hebrew letter aleph (ℵ). The smallest cardinality of an infinite set is that of the natural numbers, denoted by \aleph_0 (read ''aleph-nought'', ''aleph-zero'', or ''aleph-null''); the next larger cardinality of a well-ordered set is \aleph_1, then \aleph_2, then \aleph_3, and so on. Continuing in this manner, it is possible to define an infinite cardinal number \aleph_ for every ordinal number \alpha, as described below. The concept and notation are due to Georg Cantor, who defined the notion of cardinality and realized that infinite sets can have different cardinalities. The aleph numbers differ from the infinity (\infty) commonly found in algebra and calculus, in that the alephs measure the sizes of sets, while ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press was the university press of the University of Cambridge. Granted a letters patent by King Henry VIII in 1534, it was the oldest university press in the world. Cambridge University Press merged with Cambridge Assessment to form Cambridge University Press and Assessment under Queen Elizabeth II's approval in August 2021. With a global sales presence, publishing hubs, and offices in more than 40 countries, it published over 50,000 titles by authors from over 100 countries. Its publications include more than 420 academic journals, monographs, reference works, school and university textbooks, and English language teaching and learning publications. It also published Bibles, runs a bookshop in Cambridge, sells through Amazon, and has a conference venues business in Cambridge at the Pitt Building and the Sir Geoffrey Cass Sports and Social Centre. It also served as the King's Printer. Cambridge University Press, as part of the University of Cambridge, was a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Veblen Function
In mathematics, the Veblen functions are a hierarchy of normal functions ( continuous strictly increasing functions from ordinals to ordinals), introduced by Oswald Veblen in . If ''φ''0 is any normal function, then for any non-zero ordinal ''α'', ''φ''''α'' is the function enumerating the common fixed points of ''φ''''β'' for ''β''<''α''. These functions are all normal.


Veblen hierarchy

In the special case when ''φ''0(''α'')=ω''α'' this family of functions is known as the Veblen hierarchy. The function ''φ''1 is the same as the ε function: ''φ''1(''α'')= ε''α''. If \alpha < \beta \,, then \varphi_(\varphi_(\gamma)) = \varphi_(\gamma).M. Rathjen

[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fixed-point Lemma For Normal Functions
The fixed-point lemma for normal functions is a basic result in axiomatic set theory stating that any normal function has arbitrarily large fixed points (Levy 1979: p. 117). It was first proved by Oswald Veblen in 1908. Background and formal statement A normal function is a class function f from the class Ord of ordinal numbers to itself such that: * f is strictly increasing: f(\alpha) whenever \alpha<\beta. * f is continuous: for every limit ordinal \lambda (i.e. \lambda is neither zero nor a successor), f(\lambda)=\sup\. It can be shown that if f is normal then f commutes with suprema; for any nonempty set A of ordinals, :f(\sup A)=\sup f(A) = \sup\. Indeed, if \sup A is a successor ordinal then \sup A is an element of A a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Empty Set
In mathematics, the empty set or void set is the unique Set (mathematics), set having no Element (mathematics), elements; its size or cardinality (count of elements in a set) is 0, zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other theories, its existence can be deduced. Many possible properties of sets are vacuously true for the empty set. Any set other than the empty set is called ''non-empty''. In some textbooks and popularizations, the empty set is referred to as the "null set". However, null set is a distinct notion within the context of measure theory, in which it describes a set of measure zero (which is not necessarily empty). Notation Common notations for the empty set include "", "\emptyset", and "∅". The latter two symbols were introduced by the Bourbaki group (specifically André Weil) in 1939, inspired by the letter Ø () in the Danish orthography, Danish and Norwegian orthography, Norwegian a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Beth Number
In mathematics, particularly in set theory, the beth numbers are a certain sequence of infinite cardinal numbers (also known as transfinite numbers), conventionally written \beth_0, \beth_1, \beth_2, \beth_3, \dots, where \beth is the Hebrew letter beth. The beth numbers are related to the aleph numbers (\aleph_0, \aleph_1, \dots), but unless the generalized continuum hypothesis is true, there are numbers indexed by \aleph that are not indexed by \beth or the gimel function \gimel. Definition Beth numbers are defined by transfinite recursion: * \beth_0 = \aleph_0, * \beth_ = 2^, * \beth_\lambda = \sup\Bigl\, where \alpha is an ordinal and \lambda is a limit ordinal. The cardinal \beth_0 = \aleph_0 is the cardinality of any countably infinite set such as the set \mathbb of natural numbers, so that \beth_0 = , \mathbb, . Let \alpha be an ordinal, and A_\alpha be a set with cardinality \beth_\alpha = , A_\alpha, . Then, * \mathcal(A_\alpha) denotes the power set of A_\a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cardinal Number
In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set. In the case of a finite set, its cardinal number, or cardinality is therefore a natural number. For dealing with the case of infinite sets, the infinite cardinal numbers have been introduced, which are often denoted with the Hebrew letter \aleph (aleph) marked with subscript indicating their rank among the infinite cardinals. Cardinality is defined in terms of bijective functions. Two sets have the same cardinality if, and only if, there is a one-to-one correspondence (bijection) between the elements of the two sets. In the case of finite sets, this agrees with the intuitive notion of number of elements. In the case of infinite sets, the behavior is more complex. A fundamental theorem due to Georg Cantor shows that it is possible for two infinite sets to have different cardinalities, and in particular the cardinality of the set of real numbers is gre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ordinal Arithmetic
In the mathematical field of set theory, ordinal arithmetic describes the three usual operations on ordinal numbers: addition, multiplication, and exponentiation. Each can be defined in essentially two different ways: either by constructing an explicit well-ordered set that represents the result of the operation or by using transfinite recursion. Cantor normal form provides a standardized way of writing ordinals. In addition to these usual ordinal operations, there are also the "natural" arithmetic of ordinals and the nimber operations. Addition The sum of two well-ordered sets and is the ordinal representing the variant of lexicographical order with least significant position first, on the union of the Cartesian products and . This way, every element of is smaller than every element of , comparisons within keep the order they already have, and likewise for comparisons within . The definition of addition can also be given by transfinite recursion on . When the right ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ordinal Number
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least natural number that has not been previously used. To extend this process to various infinite sets, ordinal numbers are defined more generally using linearly ordered greek letter variables that include the natural numbers and have the property that every set of ordinals has a least or "smallest" element (this is needed for giving a meaning to "the least unused element"). This more general definition allows us to define an ordinal number \omega (omega) to be the least element that is greater than every natural number, along with ordinal numbers , , etc., which are even greater than . A linear order such that every non-empty subset has a least element is called a well-order. The axiom of choice implies that every set can be well-orde ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Supremum
In mathematics, the infimum (abbreviated inf; : infima) of a subset S of a partially ordered set P is the greatest element in P that is less than or equal to each element of S, if such an element exists. If the infimum of S exists, it is unique, and if ''b'' is a lower bound of S, then ''b'' is less than or equal to the infimum of S. Consequently, the term ''greatest lower bound'' (abbreviated as ) is also commonly used. The supremum (abbreviated sup; : suprema) of a subset S of a partially ordered set P is the least element in P that is greater than or equal to each element of S, if such an element exists. If the supremum of S exists, it is unique, and if ''b'' is an upper bound of S, then the supremum of S is less than or equal to ''b''. Consequently, the supremum is also referred to as the ''least upper bound'' (or ). The infimum is, in a precise sense, dual to the concept of a supremum. Infima and suprema of real numbers are common special cases that are important in analy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Successor Ordinal
In set theory, the successor of an ordinal number ''α'' is the smallest ordinal number greater than ''α''. An ordinal number that is a successor is called a successor ordinal. The ordinals 1, 2, and 3 are the first three successor ordinals and the ordinals ω+1, ω+2 and ω+3 are the first three infinite successor ordinals. Properties Every ordinal other than 0 is either a successor ordinal or a limit ordinal.. In Von Neumann's model Using von Neumann's ordinal numbers (the standard model of the ordinals used in set theory), the successor ''S''(''α'') of an ordinal number ''α'' is given by the formula :S(\alpha) = \alpha \cup \. Since the ordering on the ordinal numbers is given by ''α'' < ''β'' if and only if ''α'' ∈ ''β'', it is immediate that there is no ordinal number between α and ''S''(''α''), and it is also clear that ''α'' < ''S''(''α'').


Ordinal addition

The successor operation can be used to defin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]