Normal Basis
In mathematics, specifically the algebraic theory of fields, a normal basis is a special kind of basis for Galois extensions of finite degree, characterised as forming a single orbit for the Galois group. The normal basis theorem states that any finite Galois extension of fields has a normal basis. In algebraic number theory, the study of the more refined question of the existence of a normal integral basis is part of Galois module theory. Normal basis theorem Let F\subset K be a Galois extension with Galois group G. The classical normal basis theorem states that there is an element \beta\in K such that \ forms a basis of ''K'', considered as a vector space over ''F''. That is, any element \alpha \in K can be written uniquely as \alpha = \sum_ a_g\, g(\beta) for some elements a_g\in F. A normal basis contrasts with a primitive element basis of the form \, where \beta\in K is an element whose minimal polynomial has degree n= :F/math>. Group representation point of view A ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Multiplicative Character
In mathematics, a multiplicative character (or linear character, or simply character) on a group ''G'' is a group homomorphism from ''G'' to the multiplicative group of a field , usually the field of complex numbers. If ''G'' is any group, then the set Ch(''G'') of these morphisms forms an abelian group under pointwise multiplication. This group is referred to as the character group of ''G''. Sometimes only ''unitary'' characters are considered (characters whose image is in the unit circle); other such homomorphisms are then called ''quasi-characters''. Dirichlet characters can be seen as a special case of this definition. Multiplicative characters are linearly independent, i.e. if \chi_1, \chi_2, \ldots, \chi_n are different characters on a group ''G'' then from a_1\chi_1 + a_2\chi_2 + \cdots + a_n\chi_n = 0 it follows that a_1 = a_2 = \cdots = a_n = 0. Examples *Consider the (''ax'' + ''b'')-group :: G := \left\. : Functions ''f''''u'' : ''G'' → C such that f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Harold Davenport
Harold Davenport FRS (30 October 1907 – 9 June 1969) was an English mathematician, known for his extensive work in number theory. Early life and education Born on 30 October 1907 in Huncoat, Lancashire, Davenport was educated at Accrington Grammar School, the University of Manchester (graduating in 1927), and Trinity College, Cambridge. He became a research student of John Edensor Littlewood, working on the question of the distribution of quadratic residues. First steps in research The attack on the distribution question leads quickly to problems that are now seen to be special cases of those on local zeta-functions, for the particular case of some special hyperelliptic curves such as Y^2 = X(X-1)(X-2)\ldots (X-k). Bounds for the zeroes of the local zeta-function immediately imply bounds for sums \sum \chi(X(X-1)(X-2)\ldots (X-k)), where χ is the Legendre symbol ''modulo'' a prime number ''p'', and the sum is taken over a complete set of residues mod ''p''. In the l ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prime Field
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements. The theory of fields proves that angle trisection and squaring the circle cannot be done with a compass and straightedge. Galois theory, devoted to understanding the symmetries of field extensions, provides an elegant proof of th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Primitive Element (finite Field)
In field theory, a primitive element of a finite field is a generator of the multiplicative group of the field. In other words, is called a primitive element if it is a primitive th root of unity in ; this means that each non-zero element of can be written as for some natural number . If is a prime number, the elements of can be identified with the integers modulo . In this case, a primitive element is also called a primitive root modulo . For example, 2 is a primitive element of the field and , but not of since it generates the cyclic subgroup of order 3; however, 3 is a primitive element of . The minimal polynomial of a primitive element is a primitive polynomial. Properties Number of primitive elements The number of primitive elements in a finite field is , where is Euler's totient function, which counts the number of elements less than or equal to that are coprime In number theory, two integers and are coprime, relatively prime or mutually prime i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Primitive Element Theorem
In field theory, the primitive element theorem states that every finite separable field extension is simple, i.e. generated by a single element. This theorem implies in particular that all algebraic number fields over the rational numbers, and all extensions in which both fields are finite, are simple. Terminology Let E/F be a ''field extension''. An element \alpha\in E is a ''primitive element'' for E/F if E=F(\alpha), i.e. if every element of E can be written as a rational function in \alpha with coefficients in F. If there exists such a primitive element, then E/F is referred to as a '' simple extension''. If the field extension E/F has primitive element \alpha and is of finite degree n = :F/math>, then every element \gamma\in E can be written in the form :\gamma =a_0+a_1+\cdots+a_^, for unique coefficients a_0,a_1,\ldots,a_\in F. That is, the set :\ is a basis for ''E'' as a vector space over ''F''. The degree ''n'' is equal to the degree of the irreducible poly ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Elliptic Curve Cryptography
Elliptic-curve cryptography (ECC) is an approach to public-key cryptography based on the algebraic structure of elliptic curves over finite fields. ECC allows smaller keys to provide equivalent security, compared to cryptosystems based on modular exponentiation in Galois fields, such as the RSA cryptosystem and ElGamal cryptosystem. Elliptic curves are applicable for key agreement, digital signatures, pseudo-random generators and other tasks. Indirectly, they can be used for encryption by combining the key agreement with a symmetric encryption scheme. They are also used in several integer factorization algorithms that have applications in cryptography, such as Lenstra elliptic-curve factorization. History The use of elliptic curves in cryptography was suggested independently by Neal Koblitz and Victor S. Miller in 1985. Elliptic curve cryptography algorithms entered wide use in 2004 to 2005. In 1999, NIST recommended fifteen elliptic curves. Specifically, FIPS 186 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Discrete Logarithm Problem
In mathematics, for given real numbers a and b, the logarithm \log_b(a) is a number x such that b^x=a. Analogously, in any group G, powers b^k can be defined for all integers k, and the discrete logarithm \log_b(a) is an integer k such that b^k=a. In arithmetic modulo an integer m, the more commonly used term is index: One can write k=\mathbb_b a \pmod (read "the index of a to the base b modulo m") for b^k \equiv a \pmod if b is a primitive root of m and \gcd(a,m)=1. Discrete logarithms are quickly computable in a few special cases. However, no efficient method is known for computing them in general. In cryptography, the computational complexity of the discrete logarithm problem, along with its application, was first proposed in the Diffie–Hellman problem. Several important algorithms in public-key cryptography, such as ElGamal, base their security on the hardness assumption that the discrete logarithm problem (DLP) over carefully chosen groups has no efficient solution. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cryptography
Cryptography, or cryptology (from "hidden, secret"; and ''graphein'', "to write", or ''-logy, -logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of Adversary (cryptography), adversarial behavior. More generally, cryptography is about constructing and analyzing Communication protocol, protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others. Core concepts related to information security (confidentiality, data confidentiality, data integrity, authentication, and non-repudiation) are also central to cryptography. Practical applications of cryptography include electronic commerce, Smart card#EMV, chip-based payment cards, digital currencies, password, computer passwords, and military communications. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Generalized Eigenvector
In linear algebra, a generalized eigenvector of an n\times n matrix A is a vector which satisfies certain criteria which are more relaxed than those for an (ordinary) eigenvector. Let V be an n-dimensional vector space and let A be the matrix representation of a linear map from V to V with respect to some ordered basis. There may not always exist a full set of n linearly independent eigenvectors of A that form a complete basis for V. That is, the matrix A may not be diagonalizable. This happens when the algebraic multiplicity of at least one eigenvalue \lambda_i is greater than its geometric multiplicity (the nullity of the matrix (A-\lambda_i I), or the dimension of its nullspace). In this case, \lambda_i is called a defective eigenvalue and A is called a defective matrix. A generalized eigenvector x_i corresponding to \lambda_i, together with the matrix (A-\lambda_i I) generate a Jordan chain of linearly independent generalized eigenvectors which form a basis for an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Diagonalizable Matrix
In linear algebra, a square matrix A is called diagonalizable or non-defective if it is matrix similarity, similar to a diagonal matrix. That is, if there exists an invertible matrix P and a diagonal matrix D such that . This is equivalent to (Such D are not unique.) This property exists for any linear map: for a dimension (vector space), finite-dimensional vector space a linear map T:V\to V is called diagonalizable if there exists an Basis (linear algebra)#Ordered bases and coordinates, ordered basis of V consisting of eigenvectors of T. These definitions are equivalent: if T has a matrix (mathematics), matrix representation A = PDP^ as above, then the column vectors of P form a basis consisting of eigenvectors of and the diagonal entries of D are the corresponding eigenvalues of with respect to this eigenvector basis, T is represented by Diagonalization is the process of finding the above P and and makes many subsequent computations easier. One can raise a diag ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chinese Remainder Theorem
In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer ''n'' by several integers, then one can determine uniquely the remainder of the division of ''n'' by the product of these integers, under the condition that the divisors are pairwise coprime (no two divisors share a common factor other than 1). The theorem is sometimes called Sunzi's theorem. Both names of the theorem refer to its earliest known statement that appeared in '' Sunzi Suanjing'', a Chinese manuscript written during the 3rd to 5th century CE. This first statement was restricted to the following example: If one knows that the remainder of ''n'' divided by 3 is 2, the remainder of ''n'' divided by 5 is 3, and the remainder of ''n'' divided by 7 is 2, then with no other information, one can determine the remainder of ''n'' divided by 105 (the product of 3, 5, and 7) without knowing the value of ''n''. In this example, the remainder is 23. More ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |