Nonnegative Matrix
In mathematics, a nonnegative matrix, written : \mathbf \geq 0, is a matrix in which all the elements are equal to or greater than zero, that is, : x_ \geq 0\qquad \forall . A positive matrix is a matrix in which all the elements are strictly greater than zero. The set of positive matrices is a subset of all non-negative matrices. While such matrices are commonly found, the term is only occasionally used due to the possible confusion with positive-definite matrices, which are different. A matrix which is both non-negative and is positive semidefinite is called a doubly non-negative matrix. A rectangular non-negative matrix can be approximated by a decomposition with two other non-negative matrices via non-negative matrix factorization. Eigenvalues and eigenvectors of square positive matrices are described by the Perron–Frobenius theorem. Properties *The trace and every row and column sum/product of a nonnegative matrix is nonnegative. Inversion The inverse of any non-s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Totally Positive Matrix In mathematics, a totally positive matrix is a square matrix in which all the minors are positive: that is, the determinant of every square submatrix is a positive number. A totally positive matrix has all entries positive, so it is also a positive matrix; and it has all principal minors positive (and positive eigenvalues). A symmetric totally positive matrix is therefore also positive-definite. A totally non-negative matrix is defined similarly, except that all the minors must be non-negative (positive or zero). Some authors use "totally positive" to include all totally non-negative matrices. Definition Let \mathbf = (A_)_ be an ''n'' × ''n'' matrix. Consider any p\in\ and any ''p'' × ''p'' submatrix of the form \mathbf = (A_)_ where: : 1\le i_1 < \ldots < i_p \le n,\qquad 1\le j_1 <\ldots < j_p \le n. Then A is a totally positive matrix if: |