HOME





Non-abelian Class Field Theory
In mathematics, non-abelian class field theory is a catchphrase, meaning the extension of the results of class field theory, the relatively complete and classical set of results on abelian extensions of any number field ''K'', to the general Galois extension ''L''/''K''. While class field theory was essentially known by 1930, the corresponding non-abelian theory has never been formulated in a definitive and accepted sense. History A presentation of class field theory in terms of group cohomology was carried out by Claude Chevalley, Emil Artin and others, mainly in the 1940s. This resulted in a formulation of the central results by means of the group cohomology of the idele class group. The theorems of the cohomological approach are independent of whether or not the Galois group ''G'' of ''L''/''K'' is abelian. This theory has never been regarded as the sought-after ''non-abelian'' theory. The first reason that can be cited for that is that it did not provide fresh information on the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quadratic Reciprocity
In number theory, the law of quadratic reciprocity is a theorem about modular arithmetic that gives conditions for the solvability of quadratic equations modulo prime numbers. Due to its subtlety, it has many formulations, but the most standard statement is: This law, together with its supplements, allows the easy calculation of any Legendre symbol, making it possible to determine whether there is an integer solution for any quadratic equation of the form x^2\equiv a \bmod p for an odd prime p; that is, to determine the "perfect squares" modulo p. However, this is a non-constructive result: it gives no help at all for finding a ''specific'' solution; for this, other methods are required. For example, in the case p\equiv 3 \bmod 4 using Euler's criterion one can give an explicit formula for the "square roots" modulo p of a quadratic residue a, namely, :\pm a^ indeed, :\left (\pm a^ \right )^2=a^=a\cdot a^\equiv a\left(\frac\right)=a \bmod p. This formula only works if it is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Frobenioid
In arithmetic geometry, a Frobenioid is a category with some extra structure that generalizes the theory of line bundles on models of finite extensions of global fields. Frobenioids were introduced by . The word "Frobenioid" is a portmanteau of Frobenius and monoid, as certain Frobenius morphisms between Frobenioids are analogues of the usual Frobenius morphism, and some of the simplest examples of Frobenioids are essentially monoids. The Frobenioid of a monoid If ''M'' is a commutative monoid, it is acted on naturally by the monoid ''N'' of positive integers under multiplication, with an element ''n'' of ''N'' multiplying an element of ''M'' by ''n''. The Frobenioid of ''M'' is the semidirect product of ''M'' and ''N''. The underlying category of this Frobenioid is category of the monoid, with one object and a morphism for each element of the monoid. The standard Frobenioid is the special case of this construction when ''M'' is the additive monoid of non-negative integers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Anabelian Geometry
Anabelian geometry is a theory in number theory which describes the way in which the algebraic fundamental group ''G'' of a certain arithmetic variety ''X'', or some related geometric object, can help to recover ''X''. The first results for number fields and their absolute Galois groups were obtained by Jürgen Neukirch, Masatoshi Gündüz Ikeda, Kenkichi Iwasawa, and Kôji Uchida ( Neukirch–Uchida theorem, 1969), prior to conjectures made about hyperbolic curves over number fields by Alexander Grothendieck. As introduced in '' Esquisse d'un Programme'' the latter were about how topological homomorphisms between two arithmetic fundamental groups of two hyperbolic curves over number fields correspond to maps between the curves. A first version of Grothendieck's anabelian conjecture was solved by Hiroaki Nakamura and Akio Tamagawa (for affine curves), then completed by Shinichi Mochizuki. Formulation of a conjecture of Grothendieck on curves The "anabelian question" has ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Automorphic Representation
In harmonic analysis and number theory, an automorphic form is a well-behaved function from a topological group ''G'' to the complex numbers (or complex vector space) which is invariant under the action of a discrete subgroup \Gamma \subset G of the topological group. Automorphic forms are a generalization of the idea of periodic functions in Euclidean space to general topological groups. Modular forms are holomorphic automorphic forms defined over the groups SL(2, R) or PSL(2, R) with the discrete subgroup being the modular group, or one of its congruence subgroups; in this sense the theory of automorphic forms is an extension of the theory of modular forms. More generally, one can use the adelic approach as a way of dealing with the whole family of congruence subgroups at once. From this point of view, an automorphic form over the group ''G''(A''F''), for an algebraic group ''G'' and an algebraic number field ''F'', is a complex-valued function on ''G''(A''F'') tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Langlands Program
In mathematics, the Langlands program is a set of conjectures about connections between number theory, the theory of automorphic forms, and geometry. It was proposed by . It seeks to relate the structure of Galois groups in algebraic number theory to automorphic forms and, more generally, the representation theory of algebraic groups over local fields and adeles. It was described by Edward Frenkel as the " grand unified theory of mathematics." Background The Langlands program is built on existing ideas: the philosophy of cusp forms formulated a few years earlier by Harish-Chandra and , the work and Harish-Chandra's approach on semisimple Lie groups, and in technical terms the trace formula of Selberg and others. What was new in Langlands' work, besides technical depth, was the proposed connection to number theory, together with its rich organisational structure hypothesised (so-called functoriality). Harish-Chandra's work exploited the principle that what can be d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Artin L-function
In mathematics, an Artin ''L''-function is a type of Dirichlet series associated to a linear representation ρ of a Galois group ''G''. These functions were introduced in 1923 by Emil Artin, in connection with his research into class field theory. Their fundamental properties, in particular the Artin conjecture described below, have turned out to be resistant to easy proof. One of the aims of proposed non-abelian class field theory is to incorporate the complex-analytic nature of Artin ''L''-functions into a larger framework, such as is provided by automorphic forms and the Langlands program. So far, only a small part of such a theory has been put on a firm basis. Definition Given \rho , a representation of G on a finite-dimensional complex vector space V, where G is the Galois group of the finite extension L/K of number fields, the Artin L-function L(\rho,s) is defined by an Euler product. For each prime ideal \mathfrak p in K's ring of integers, there is an Euler fac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Artin Reciprocity
The Artin reciprocity law, which was established by Emil Artin in a series of papers (1924; 1927; 1930), is a general theorem in number theory that forms a central part of global class field theory. The term " reciprocity law" refers to a long line of more concrete number theoretic statements which it generalized, from the quadratic reciprocity law and the reciprocity laws of Eisenstein and Kummer to Hilbert's product formula for the norm symbol. Artin's result provided a partial solution to Hilbert's ninth problem. Statement Let L/K be a Galois extension of global fields and C_L stand for the idèle class group of L. One of the statements of the Artin reciprocity law is that there is a canonical isomorphism called the global symbol mapNeukirch (1999) p.391 : \theta: C_K/ \to \operatorname(L/K)^, where \text denotes the abelianization of a group, and \operatorname(L/K) is the Galois group of L over K. The map \theta is defined by assembling the maps called the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Class Formation
In mathematics, a class formation is a topological group acting on a module satisfying certain conditions. Class formations were introduced by Emil Artin and John Tate to organize the various Galois groups and modules that appear in class field theory. Definitions A formation is a topological group ''G'' together with a topological ''G''-module ''A'' on which ''G'' acts continuously. A layer ''E''/''F'' of a formation is a pair of open subgroups ''E'', ''F'' of ''G'' such that ''F'' is a finite index subgroup of ''E''. It is called a normal layer if ''F'' is a normal subgroup of ''E'', and a cyclic layer if in addition the quotient group is cyclic. If ''E'' is a subgroup of ''G'', then ''A''''E'' is defined to be the elements of ''A'' fixed by ''E''. We write :''H''''n''(''E''/''F'') for the Tate cohomology group ''H''''n''(''E''/''F'', ''A''''F'') whenever ''E''/''F'' is a normal layer. (Some authors think of ''E'' and ''F'' as fixed fields rather than subgroup of ''G'', ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fundamental Theorem Of Galois Theory
In mathematics, the fundamental theorem of Galois theory is a result that describes the structure of certain types of field extensions in relation to groups. It was proved by Évariste Galois in his development of Galois theory. In its most basic form, the theorem asserts that given a field extension ''E''/''F'' that is finite and Galois, there is a one-to-one correspondence between its intermediate fields and subgroups of its Galois group. (''Intermediate fields'' are fields ''K'' satisfying ''F'' ⊆ ''K'' ⊆ ''E''; they are also called ''subextensions'' of ''E''/''F''.) Explicit description of the correspondence For finite extensions, the correspondence can be described explicitly as follows. * For any subgroup ''H'' of Gal(''E''/''F''), the corresponding fixed field, denoted ''EH'', is the set of those elements of ''E'' which are fixed by every automorphism in ''H''. * For any intermediate field ''K'' of ''E''/''F'', the corresponding subgroup is Aut(''E''/''K''), t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

L-function
In mathematics, an ''L''-function is a meromorphic function on the complex plane, associated to one out of several categories of mathematical objects. An ''L''-series is a Dirichlet series, usually convergent on a half-plane, that may give rise to an ''L''-function via analytic continuation. The Riemann zeta function is an example of an ''L''-function, and some important conjectures involving ''L''-functions are the Riemann hypothesis and its generalizations. The theory of ''L''-functions has become a very substantial, and still largely conjectural, part of contemporary analytic number theory. In it, broad generalisations of the Riemann zeta function and the ''L''-series for a Dirichlet character are constructed, and their general properties, in most cases still out of reach of proof, are set out in a systematic way. Because of the Euler product formula there is a deep connection between ''L''-functions and the theory of prime numbers. The mathematical field tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dirichlet Series
In mathematics, a Dirichlet series is any series of the form \sum_^\infty \frac, where ''s'' is complex, and a_n is a complex sequence. It is a special case of general Dirichlet series. Dirichlet series play a variety of important roles in analytic number theory. The most usually seen definition of the Riemann zeta function is a Dirichlet series, as are the Dirichlet L-functions. Specifically, the Riemann zeta function ''ζ(s)'' is the Dirichlet series of the constant unit function ''u(n)'', namely: \zeta(s) = \sum_^\infty \frac = \sum_^\infty \frac = D(u, s), where ''D(u, s)'' denotes the Dirichlet series of ''u(n)''. It is conjectured that the Selberg class of series obeys the generalized Riemann hypothesis. The series is named in honor of Peter Gustav Lejeune Dirichlet. Combinatorial importance Dirichlet series can be used as generating series for counting weighted sets of objects with respect to a weight which is combined multiplicatively when taking Cartesian product ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]