New Digraph Reconstruction Conjecture
The reconstruction conjecture of Stanisław Ulam is one of the best-known open problems in graph theory. Using the terminology of Frank Harary it can be stated as follows: If ''G'' and ''H'' are two graphs on at least three vertices and ƒ is a bijection from ''V''(''G'') to ''V''(''H'') such that ''G''\ and ''H''\ are isomorphic for all vertices ''v'' in ''V''(''G''), then ''G'' and ''H'' are isomorphic. In 1964 Harary extended the reconstruction conjecture to directed graphs on at least five vertices as the so-called digraph reconstruction conjecture. Many results supporting the digraph reconstruction conjecture appeared between 1964 and 1976. However, this conjecture was proved to be false when P. K. Stockmeyer discovered several infinite families of counterexample pairs of digraphs (including tournaments) of arbitrarily large order.. Erratum, ''J. Graph Th.'' 62 (2): 199–200, 2009, , . The falsity of the digraph reconstruction conjecture caused doubt about the reconstructio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Reconstruction Conjecture
Informally, the reconstruction conjecture in graph theory says that graphs are determined uniquely by their subgraphs. It is due to KellyKelly, P. J.A congruence theorem for trees ''Pacific J. Math.'' 7 (1957), 961–968. and Ulam.Ulam, S. M., A collection of mathematical problems, Wiley, New York, 1960. Formal statements Given a graph G = (V,E), a vertex-deleted subgraph of G is a subgraph formed by deleting exactly one vertex from G. By definition, it is an induced subgraph of G. For a graph G, the deck of G, denoted D(G), is the multiset of isomorphism classes of all vertex-deleted subgraphs of G. Each graph in D(G) is called a card. Two graphs that have the same deck are said to be hypomorphic. With these definitions, the conjecture can be stated as: * Reconstruction Conjecture: Any two hypomorphic graphs on at least three vertices are isomorphic. : (The requirement that the graphs have at least three vertices is necessary because both graphs on two vertices ha ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stanisław Ulam
Stanisław Marcin Ulam (; 13 April 1909 – 13 May 1984) was a Polish-American scientist in the fields of mathematics and nuclear physics. He participated in the Manhattan Project, originated the Teller–Ulam design of thermonuclear weapons, discovered the concept of the cellular automaton, invented the Monte Carlo method of computation, and suggested nuclear pulse propulsion. In pure and applied mathematics, he proved some theorems and proposed several conjectures. Born into a wealthy Polish Jewish family, Ulam studied mathematics at the Lwów Polytechnic Institute, where he earned his PhD in 1933 under the supervision of Kazimierz Kuratowski and Włodzimierz Stożek. In 1935, John von Neumann, whom Ulam had met in Warsaw, invited him to come to the Institute for Advanced Study in Princeton, New Jersey, for a few months. From 1936 to 1939, he spent summers in Poland and academic years at Harvard University in Cambridge, Massachusetts, where he worked to establish imp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graph Theory
In mathematics, graph theory is the study of '' graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are connected by ''edges'' (also called ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a set of vertices (also called nodes or points); * E \subseteq \, a set of edges (also called links or lines), which are unordered pairs of vertices (that is, an edge is associated with t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Frank Harary
Frank Harary (March 11, 1921 – January 4, 2005) was an American mathematician, who specialized in graph theory. He was widely recognized as one of the "fathers" of modern graph theory. Harary was a master of clear exposition and, together with his many doctoral students, he standardized the terminology of graphs. He broadened the reach of this field to include physics, psychology, sociology, and even anthropology. Gifted with a keen sense of humor, Harary challenged and entertained audiences at all levels of mathematical sophistication. A particular trick he employed was to turn theorems into games—for instance, students would try to add red edges to a graph on six vertices in order to create a red triangle, while another group of students tried to add edges to create a blue triangle (and each edge of the graph had to be either blue or red). Because of the theorem on friends and strangers, one team or the other would have to win. Biography Frank Harary was born in New Yor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Directed Graph
In mathematics, and more specifically in graph theory, a directed graph (or digraph) is a graph that is made up of a set of vertices connected by directed edges, often called arcs. Definition In formal terms, a directed graph is an ordered pair where * ''V'' is a set whose elements are called '' vertices'', ''nodes'', or ''points''; * ''A'' is a set of ordered pairs of vertices, called ''arcs'', ''directed edges'' (sometimes simply ''edges'' with the corresponding set named ''E'' instead of ''A''), ''arrows'', or ''directed lines''. It differs from an ordinary or undirected graph, in that the latter is defined in terms of unordered pairs of vertices, which are usually called ''edges'', ''links'' or ''lines''. The aforementioned definition does not allow a directed graph to have multiple arrows with the same source and target nodes, but some authors consider a broader definition that allows directed graphs to have such multiple arcs (namely, they allow the arc set to be a m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Journal Of Graph Theory
The ''Journal of Graph Theory'' is a peer-reviewed mathematics journal specializing in graph theory and related areas, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. It is published by John Wiley & Sons. The journal was established in 1977 by Frank Harary.Frank Harary a biographical sketch at the ACM SIGACT site The are [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Journal Of Combinatorial Theory
The ''Journal of Combinatorial Theory'', Series A and Series B, are mathematical journals specializing in combinatorics and related areas. They are published by Elsevier. ''Series A'' is concerned primarily with structures, designs, and applications of combinatorics. ''Series B'' is concerned primarily with graph and matroid theory. The two series are two of the leading journals in the field and are widely known as ''JCTA'' and ''JCTB''. The journal was founded in 1966 by Frank Harary and Gian-Carlo Rota.They are acknowledged on the journals' title pages and Web sites. SeEditorial board of JCTA Editorial board of JCTB Originally there was only one journal, which was split into two parts in 1971 as the field grew rapidly. An electronic, [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Outdegree
In mathematics, and more specifically in graph theory, a directed graph (or digraph) is a graph that is made up of a set of vertices connected by directed edges, often called arcs. Definition In formal terms, a directed graph is an ordered pair where * ''V'' is a set whose elements are called '' vertices'', ''nodes'', or ''points''; * ''A'' is a set of ordered pairs of vertices, called ''arcs'', ''directed edges'' (sometimes simply ''edges'' with the corresponding set named ''E'' instead of ''A''), ''arrows'', or ''directed lines''. It differs from an ordinary or undirected graph, in that the latter is defined in terms of unordered pairs of vertices, which are usually called ''edges'', ''links'' or ''lines''. The aforementioned definition does not allow a directed graph to have multiple arrows with the same source and target nodes, but some authors consider a broader definition that allows directed graphs to have such multiple arcs (namely, they allow the arc set to be a m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Indegree
In mathematics, and more specifically in graph theory, a directed graph (or digraph) is a graph that is made up of a set of vertices connected by directed edges, often called arcs. Definition In formal terms, a directed graph is an ordered pair where * ''V'' is a set whose elements are called '' vertices'', ''nodes'', or ''points''; * ''A'' is a set of ordered pairs of vertices, called ''arcs'', ''directed edges'' (sometimes simply ''edges'' with the corresponding set named ''E'' instead of ''A''), ''arrows'', or ''directed lines''. It differs from an ordinary or undirected graph, in that the latter is defined in terms of unordered pairs of vertices, which are usually called ''edges'', ''links'' or ''lines''. The aforementioned definition does not allow a directed graph to have multiple arrows with the same source and target nodes, but some authors consider a broader definition that allows directed graphs to have such multiple arcs (namely, they allow the arc set to be a m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conjectures
In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis (still a conjecture) or Fermat's Last Theorem (a conjecture until proven in 1995 by Andrew Wiles), have shaped much of mathematical history as new areas of mathematics are developed in order to prove them. Important examples Fermat's Last Theorem In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, ''b'', and ''c'' can satisfy the equation ''a^n + b^n = c^n'' for any integer value of ''n'' greater than two. This theorem was first conjectured by Pierre de Fermat in 1637 in the margin of a copy of ''Arithmetica'', where he claimed that he had a proof that was too large to fit in the margin. The first successful proof was released in 1994 by Andrew Wiles, and formally published in 1995, after 358 years of effort by mat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Unsolved Problems In Graph Theory
Unsolved may refer to: * ''Unsolved'' (album), a 2000 album by the American band Karate * ''Unsolved'' (UK TV programme), a 2004–2006 British crime documentary television programme that aired on STV in Scotland * ''Unsolved'' (South Korean TV series), a 2010 South Korean television series * ''Unsolved'' (U.S. TV series), a 2018 American television series *'' Unsolved: The Boy Who Disappeared'', a 2016 online series by BBC Three *''The Unsolved'', a 1997 Japanese video game *''BuzzFeed Unsolved'', a show by BuzzFeed discussing unsolved crimes and haunted places See also *Solved (other) *''Unsolved Mysteries'', an American true crime television program that debuted in 1987 {{disambiguation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |