HOME



picture info

Net Force
In mechanics, the net force is the sum of all the forces acting on an object. For example, if two forces are acting upon an object in opposite directions, and one force is greater than the other, the forces can be replaced with a single force that is the difference of the greater and smaller force. That force is the net force. When forces act upon an object, they change its acceleration. The net force is the combined effect of all the forces on the object's acceleration, as described by Newton's laws of motion, Newton's second law of motion. When the net force is applied at a specific point on an object, the associated torque can be calculated. The sum of the net force and torque is called the resultant force, which causes the object to rotate in the same way as all the forces acting upon it would if they were applied individually. It is possible for all the forces acting upon an object to produce no torque at all. This happens when the net force is applied along the line of act ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Free Body Diagram
In physics and engineering, a free body diagram (FBD; also called a force diagram) is a graphical illustration used to visualize the applied forces, moments, and resulting reactions on a free body in a given condition. It depicts a body or connected bodies with all the applied forces and moments, and reactions, which act on the body(ies). The body may consist of multiple internal members (such as a truss), or be a compact body (such as a beam). A series of free bodies and other diagrams may be necessary to solve complex problems. Sometimes in order to calculate the resultant force graphically the applied forces are arranged as the edges of a polygon of forces or force polygon (see ). Free body A body is said to be "free" when it is singled out from other bodies for the purposes of dynamic or static analysis. The object does not have to be "free" in the sense of being unforced, and it may or may not be in a state of equilibrium; rather, it is not fixed in place and is thus " ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Point Of Application
Statics is the branch of classical mechanics that is concerned with the analysis of force and torque acting on a physical system that does not experience an acceleration, but rather is in mechanical equilibrium, equilibrium with its environment. If \textbf F is the total of the forces acting on the system, m is the mass of the system and \textbf a is the acceleration of the system, Newton's second law states that \textbf F = m \textbf a \, (the bold font indicates a Euclidean vector, vector quantity, i.e. one with both Magnitude (mathematics), magnitude and Direction (geometry), direction). If \textbf a =0, then \textbf F = 0. As for a system in static equilibrium, the acceleration equals zero, the system is either at rest, or its center of mass moves at constant velocity. The application of the assumption of zero acceleration to the summation of Moment (physics), moments acting on the system leads to \textbf M = I \alpha = 0, where \textbf M is the summation of all momen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Synonym
A synonym is a word, morpheme, or phrase that means precisely or nearly the same as another word, morpheme, or phrase in a given language. For example, in the English language, the words ''begin'', ''start'', ''commence'', and ''initiate'' are all synonyms of one another: they are ''synonymous''. The standard test for synonymy is substitution: one form can be replaced by another in a sentence without changing its meaning. Words may often be synonymous in only one particular sense: for example, ''long'' and ''extended'' in the context ''long time'' or ''extended time'' are synonymous, but ''long'' cannot be used in the phrase ''extended family''. Synonyms with exactly the same meaning share a seme or denotational sememe, whereas those with inexactly similar meanings share a broader denotational or connotational sememe and thus overlap within a semantic field. The former are sometimes called cognitive synonyms and the latter, near-synonyms, plesionyms or poecilonyms. Lexic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Parallel Net Force
Parallel may refer to: Mathematics * Parallel (geometry), two lines in the Euclidean plane which never intersect * Parallel (operator), mathematical operation named after the composition of electrical resistance in parallel circuits Science and engineering * Parallel (latitude), an imaginary east–west line circling a globe * Parallel of declination, used in astronomy * Parallel, a geometric term of location meaning "in the same direction" * Parallel electrical circuits Computing * Parallel (software), a UNIX utility for running programs in parallel Language * Parallelism (grammar), a balance of two or more similar words, phrases, or clauses * Parallelism (rhetoric) Entertainment * ''Parallel'' (manga) * ''Parallel'' (2018 film), a Canadian science fiction thriller film * ''Parallel'' (2024 film) an American science fiction thriller film * ''Parallel'' (video), a compilation of music videos by R.E.M. * ''Parallel'' (The Black Dog album), 1995 * ''Parallel'' (Fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Work Physics
In science, work is the energy transferred to or from an object via the application of force along a displacement. In its simplest form, for a constant force aligned with the direction of motion, the work equals the product of the force strength and the distance traveled. A force is said to do ''positive work'' if it has a component in the direction of the displacement of the point of application. A force does ''negative work'' if it has a component opposite to the direction of the displacement at the point of application of the force. For example, when a ball is held above the ground and then dropped, the work done by the gravitational force on the ball as it falls is positive, and is equal to the weight of the ball (a force) multiplied by the distance to the ground (a displacement). If the ball is thrown upwards, the work done by the gravitational force is negative, and is equal to the weight multiplied by the displacement in the upwards direction. Both force and displaceme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Non-parallel Net Force
In geometry, parallel lines are coplanar infinite straight lines that do not intersect at any point. Parallel planes are planes in the same three-dimensional space that never meet. ''Parallel curves'' are curves that do not touch each other or intersect and keep a fixed minimum distance. In three-dimensional Euclidean space, a line and a plane that do not share a point are also said to be parallel. However, two noncoplanar lines are called ''skew lines''. Line segments and Euclidean vectors are parallel if they have the same direction or opposite direction (not necessarily the same length). Parallel lines are the subject of Euclid's parallel postulate. Parallelism is primarily a property of affine geometries and Euclidean geometry is a special instance of this type of geometry. In some other geometries, such as hyperbolic geometry, lines can have analogous properties that are referred to as parallelism. Symbol The parallel symbol is \parallel. For example, AB \paral ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Couple (mechanics)
In physics, a couple or torque is a pair of forces that are equal in magnitude but opposite in their direction of action. A couple produce a pure Rotation, rotational motion without any Translation, translational form. Simple couple The simplest kind of couple consists of two equal and opposite forces whose line of action, lines of action do not coincide. This is called a "simple couple".''Dynamics, Theory and Applications'' by T.R. Kane and D.A. Levinson, 1985, pp. 90–99Free download/ref> The forces have a turning effect or moment called a torque about an axis which is normal (geometry), normal (perpendicular) to the plane of the forces. The SI unit for the torque of the couple is newton metre. If the two forces are and , then the Euclidean vector, magnitude of the torque is given by the following formula: \tau = F d where *\tau is the moment of couple * is the magnitude of the force * is the perpendicular distance (moment) between the two parallel forces The magnitude of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Resultant Force
In physics and engineering, a resultant force is the single force and associated torque obtained by combining a system of forces and torques acting on a rigid body via vector addition. The defining feature of a resultant force, or resultant force-torque, is that it has the same effect on the rigid body as the original system of forces. Calculating and visualizing the resultant force on a body is done through computational analysis, or (in the case of sufficiently simple systems) a free body diagram. The point of application of the resultant force determines its associated torque. The term ''resultant force'' should be understood to refer to both the forces and torques acting on a rigid body, which is why some use the term ''resultant force–torque''. The force equal to the resultant force in magnitude, yet pointed in the opposite direction, is called an equilibrant force. Illustration The diagram illustrates simple graphical methods for finding the line of application of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Right-hand Rule
In mathematics and physics, the right-hand rule is a Convention (norm), convention and a mnemonic, utilized to define the orientation (vector space), orientation of Cartesian coordinate system, axes in three-dimensional space and to determine the direction of the cross product of two Euclidean vector, vectors, as well as to establish the direction of the force on a Electric current, current-carrying conductor in a magnetic field. The various right- and left-hand rules arise from the fact that the three axes of three-dimensional space have two possible orientations. This can be seen by holding your hands together with palms up and fingers curled. If the curl of the fingers represents a movement from the first or x-axis to the second or y-axis, then the third or z-axis can point along either right thumb or left thumb. History The right-hand rule dates back to the 19th century when it was implemented as a way for identifying the positive direction of coordinate axes in three dime ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Position Vector
In geometry, a position or position vector, also known as location vector or radius vector, is a Euclidean vector that represents a point ''P'' in space. Its length represents the distance in relation to an arbitrary reference origin ''O'', and its direction represents the angular orientation with respect to given reference axes. Usually denoted x, r, or s, it corresponds to the straight line segment from ''O'' to ''P''. In other words, it is the displacement or translation that maps the origin to ''P'': :\mathbf=\overrightarrow. The term position vector is used mostly in the fields of differential geometry, mechanics and occasionally vector calculus. Frequently this is used in two-dimensional or three-dimensional space, but can be easily generalized to Euclidean spaces and affine spaces of any dimension.Keller, F. J., Gettys, W. E. et al. (1993), p. 28–29. Relative position The relative position of a point ''Q'' with respect to point ''P'' is the Euclidean vector res ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Moment Of Inertia
The moment of inertia, otherwise known as the mass moment of inertia, angular/rotational mass, second moment of mass, or most accurately, rotational inertia, of a rigid body is defined relatively to a rotational axis. It is the ratio between the torque applied and the resulting angular acceleration about that axis. It plays the same role in rotational motion as mass does in linear motion. A body's moment of inertia about a particular axis depends both on the mass and its distribution relative to the axis, increasing with mass and distance from the axis. It is an intensive and extensive properties, extensive (additive) property: for a point particle, point mass the moment of inertia is simply the mass times the square of the perpendicular distance to the axis of rotation. The moment of inertia of a rigid composite system is the sum of the moments of inertia of its component subsystems (all taken about the same axis). Its simplest definition is the second Moment (physics), mome ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]