Mollweide's Formula
In trigonometry, Mollweide's formula is a pair of relationships between sides and angles in a triangle. A variant in more geometrical style was first published by Isaac Newton in 1707 and then by in 1746. Thomas Simpson published the now-standard expression in 1748. Karl Mollweide republished the same result in 1808 without citing those predecessors. It can be used to check the consistency of solutions of triangles. Let a, b, and c be the lengths of the three sides of a triangle. Let \alpha, \beta, and \gamma be the measures of the angles opposite those three sides respectively. Mollweide's formulas are : \begin \frac c = \frac , \\ 0mu \frac c = \frac . \end Relation to other trigonometric identities Because in a planar triangle \tfrac12\gamma = \tfrac12\pi - \tfrac12(\alpha + \beta), these identities can alternately be written in a form in which they are more clearly a limiting case of Napier's analogies for spherical triangles (this was the form used by V ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Triangle With Notations 2
A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called ''vertices'', are zero-dimensional points while the sides connecting them, also called ''edges'', are one-dimensional line segments. A triangle has three internal angles, each one bounded by a pair of adjacent edges; the sum of angles of a triangle always equals a straight angle (180 degrees or π radians). The triangle is a plane figure and its interior is a planar region. Sometimes an arbitrary edge is chosen to be the ''base'', in which case the opposite vertex is called the ''apex''; the shortest segment between the base and apex is the ''height''. The area of a triangle equals one-half the product of height and base length. In Euclidean geometry, any two points determine a unique line segment situated within a unique straight line, and any three points that do not all lie on the same straight line determine a unique triangle situated within ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Semiperimeter
In geometry, the semiperimeter of a polygon is half its perimeter. Although it has such a simple derivation from the perimeter, the semiperimeter appears frequently enough in formulas for triangles and other figures that it is given a separate name. When the semiperimeter occurs as part of a formula, it is typically denoted by the letter . Motivation: triangles The semiperimeter is used most often for triangles; the formula for the semiperimeter of a triangle with side lengths :s = \frac. Properties In any triangle, any vertex and the point where the opposite excircle touches the triangle partition the triangle's perimeter into two equal lengths, thus creating two paths each of which has a length equal to the semiperimeter. If are as shown in the figure, then the segments connecting a vertex with the opposite excircle tangency (, shown in red in the diagram) are known as splitters, and :\begin s &= , AB, +, A'B, =, AB, +, AB', =, AC, +, A'C, \\ &= , AC, +, AC', =, BC, +, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cyclic Quadrilateral
In geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral (four-sided polygon) whose vertex (geometry), vertices all lie on a single circle, making the sides Chord (geometry), chords of the circle. This circle is called the ''circumcircle'' or ''circumscribed circle'', and the vertices are said to be ''concyclic''. The center of the circle and its radius are called the ''circumcenter'' and the ''circumradius'' respectively. Usually the quadrilateral is assumed to be convex polygon, convex, but there are also Crossed quadrilateral, crossed cyclic quadrilaterals. The formulas and properties given below are valid in the convex case. The word cyclic is from the Ancient Greek (''kuklos''), which means "circle" or "wheel". All triangles have a circumcircle, but not all quadrilaterals do. An example of a quadrilateral that cannot be cyclic is a non-square rhombus. The section Cyclic quadrilateral#Characterizations, characterizations below states what necessar ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cyclic Quadrilateral With The Angle Between Diagonals
Cycle, cycles, or cyclic may refer to: Anthropology and social sciences * Cyclic history, a theory of history * Cyclical theory, a theory of American political history associated with Arthur Schlesinger, Sr. * Social cycle, various cycles in social sciences ** Business cycle, the downward and upward movement of gross domestic product (GDP) around its ostensible, long-term growth trend Arts, entertainment, and media Films * ''Cycle'' (2008 film), a Malayalam film * ''Cycle'' (2017 film), a Marathi film Literature * ''Cycle'' (magazine), an American motorcycling enthusiast magazine * Literary cycle, a group of stories focused on common figures Music Musical terminology * Cycle (music), a set of musical pieces that belong together ** Cyclic form, a technique of construction involving multiple sections or movements ** Interval cycle, a collection of pitch classes generated from a sequence of the same interval class ** Song cycle, individually complete songs desig ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Spherical Law Of Cosines
In spherical trigonometry, the law of cosines (also called the cosine rule for sides) is a theorem relating the sides and angles of spherical triangles, analogous to the ordinary law of cosines from plane trigonometry. Given a unit sphere, a "spherical triangle" on the surface of the sphere is defined by the great circles connecting three points , and on the sphere (shown at right). If the lengths of these three sides are (from to (from to ), and (from to ), and the angle of the corner opposite is , then the (first) spherical law of cosines states:Romuald Ireneus 'Scibor-MarchockiSpherical trigonometry ''Elementary-Geometry Trigonometry'' web page (1997).W. Gellert, S. Gottwald, M. Hellwich, H. Kästner, and H. Küstner, ''The VNR Concise Encyclopedia of Mathematics'', 2nd ed., ch. 12 (Van Nostrand Reinhold: New York, 1989). \cos c = \cos a \cos b + \sin a \sin b \cos C\, Since this is a unit sphere, the lengths , and are simply equal to the angles (in radians) subte ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Spherical Trigonometry
Spherical trigonometry is the branch of spherical geometry that deals with the metrical relationships between the edge (geometry), sides and angles of spherical triangles, traditionally expressed using trigonometric functions. On the sphere, geodesics are great circles. Spherical trigonometry is of great importance for calculations in astronomy, geodesy, and navigation. The origins of spherical trigonometry in Greek mathematics and the major developments in Islamic mathematics are discussed fully in History of trigonometry and Mathematics in medieval Islam. The subject came to fruition in Early Modern times with important developments by John Napier, Jean Baptiste Joseph Delambre, Delambre and others, and attained an essentially complete form by the end of the nineteenth century with the publication of Todhunter's textbook ''Spherical trigonometry for the use of colleges and Schools''. Since then, significant developments have been the application of vector methods, quaternion m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Law Of Cosines
In trigonometry, the law of cosines (also known as the cosine formula or cosine rule) relates the lengths of the sides of a triangle to the cosine of one of its angles. For a triangle with sides , , and , opposite respective angles , , and (see Fig. 1), the law of cosines states: \begin c^2 &= a^2 + b^2 - 2ab\cos\gamma, \\[3mu] a^2 &= b^2+c^2-2bc\cos\alpha, \\[3mu] b^2 &= a^2+c^2-2ac\cos\beta. \end The law of cosines generalizes the Pythagorean theorem, which holds only for right triangles: if is a right angle then , and the law of cosines special case, reduces to . The law of cosines is useful for solution of triangles, solving a triangle when all three sides or two sides and their included angle are given. Use in solving triangles The theorem is used in solution of triangles, i.e., to find (see Figure 3): *the third side of a triangle if two sides and the angle between them is known: c = \sqrt\,; *the angles of a triangle if the three sides are known: \gamma = \arccos\l ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Law Of Sines
In trigonometry, the law of sines (sometimes called the sine formula or sine rule) is a mathematical equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, \frac \,=\, \frac \,=\, \frac \,=\, 2R, where , and are the lengths of the sides of a triangle, and , and are the opposite angles (see figure 2), while is the radius of the triangle's circumcircle. When the last part of the equation is not used, the law is sometimes stated using the Multiplicative inverse, reciprocals; \frac \,=\, \frac \,=\, \frac. The law of sines can be used to compute the remaining sides of a triangle when two angles and a side are known—a technique known as triangulation. It can also be used when two sides and one of the non-enclosed angles are known. In some such cases, the triangle is not uniquely determined by this data (called the ''ambiguous case'') and the technique gives two possible values for the enclosed angle. The law of sines is on ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Law Of Cotangents
In trigonometry, the law of cotangents is a relationship among the lengths of the sides of a triangle and the cotangents of the halves of the three angles. Just as three quantities whose equality is expressed by the law of sines are equal to the diameter of the circumscribed circle of the triangle (or to its reciprocal, depending on how the law is expressed), so also the law of cotangents relates the radius of the inscribed circle of a triangle (the inradius) to its sides and angles. Statement Using the usual notations for a triangle (see the figure at the upper right), where are the lengths of the three sides, are the vertices opposite those three respective sides, are the corresponding angles at those vertices, is the semiperimeter, that is, , and is the radius of the inscribed circle, the law of trigonometric function, cotangents states that \frac = \frac = \frac = \frac, and furthermore that the inradius is given by r = \sqrt\,. Proof In the upper figure, the points ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Trigonometry
Trigonometry () is a branch of mathematics concerned with relationships between angles and side lengths of triangles. In particular, the trigonometric functions relate the angles of a right triangle with ratios of its side lengths. The field emerged in the Hellenistic world during the 3rd century BC from applications of geometry to astronomical studies. The Greeks focused on the calculation of chords, while mathematicians in India created the earliest-known tables of values for trigonometric ratios (also called trigonometric functions) such as sine. Throughout history, trigonometry has been applied in areas such as geodesy, surveying, celestial mechanics, and navigation. Trigonometry is known for its many identities. These trigonometric identities are commonly used for rewriting trigonometrical expressions with the aim to simplify an expression, to find a more useful form of an expression, or to solve an equation. History Sumerian astronomers studied angle me ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Law Of Tangents
In trigonometry, the law of tangents or tangent rule is a statement about the relationship between the tangents of two angles of a triangle and the lengths of the opposing sides. In Figure 1, , , and are the lengths of the three sides of the triangle, and , , and are the angles ''opposite'' those three respective sides. The law of tangents states that : \frac = \frac . The law of tangents, although not as commonly known as the law of sines or the law of cosines, is equivalent to the law of sines, and can be used in any case where two sides and the included angle, or two angles and a side, are known. Proof To prove the law of tangents one can start with the law of sines: : \frac = \frac = d, where is the diameter of the circumcircle, so that and . It follows that : \frac = \frac = \frac . Using the trigonometric identity, the factor formula for sines specifically : \sin\alpha \pm \sin\beta = 2 \sin\tfrac12(\alpha \pm \beta) \, \cos\tfrac12( ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Napier's Analogies
Spherical trigonometry is the branch of spherical geometry that deals with the metrical relationships between the sides and angles of spherical triangles, traditionally expressed using trigonometric functions. On the sphere, geodesics are great circles. Spherical trigonometry is of great importance for calculations in astronomy, geodesy, and navigation. The origins of spherical trigonometry in Greek mathematics and the major developments in Islamic mathematics are discussed fully in History of trigonometry and Mathematics in medieval Islam. The subject came to fruition in Early Modern times with important developments by John Napier, Jean Baptiste Joseph Delambre, Delambre and others, and attained an essentially complete form by the end of the nineteenth century with the publication of Todhunter's textbook ''Spherical trigonometry for the use of colleges and Schools''. Since then, significant developments have been the application of vector methods, quaternion methods, and the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |