Modes Of Convergence
In mathematics, there are many senses in which a sequence or a series is said to be convergent. This article describes various modes (senses or species) of convergence in the settings where they are defined. For a list of modes of convergence, see Modes of convergence (annotated index) Each of the following objects is a special case of the types preceding it: sets, topological spaces, uniform spaces, topological abelian group, normed spaces, Euclidean spaces, and the real/complex numbers. Also, any metric space is a uniform space. Elements of a topological space Convergence can be defined in terms of sequences in first-countable spaces. Nets are a generalization of sequences that are useful in spaces which are not first countable. Filters further generalize the concept of convergence. In metric spaces, one can define Cauchy sequences. Cauchy nets and filters are generalizations to uniform spaces. Even more generally, Cauchy spaces are spaces in which Cauchy filters may be d ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cauchy Space
In general topology and analysis, a Cauchy space is a generalization of metric spaces and uniform spaces for which the notion of Cauchy convergence still makes sense. Cauchy spaces were introduced by H. H. Keller in 1968, as an axiomatic tool derived from the idea of a Cauchy filter, in order to study completeness in topological spaces. The category of Cauchy spaces and ''Cauchy continuous maps'' is Cartesian closed, and contains the category of proximity spaces. Definition Throughout, X is a set, \wp(X) denotes the power set of X, and all filters are assumed to be proper/non-degenerate (i.e. a filter may not contain the empty set). A Cauchy space is a pair (X, C) consisting of a set X together with a family C \subseteq \wp(\wp(X)) of (proper) filters on X having all of the following properties: # For each x \in X, the discrete ultrafilter at x, denoted by U(x), is in C. # If F \in C, G is a proper filter, and F is a subset of G, then G \in C. # If F, G \in C and if each me ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Codomain
In mathematics, a codomain, counter-domain, or set of destination of a function is a set into which all of the output of the function is constrained to fall. It is the set in the notation . The term '' range'' is sometimes ambiguously used to refer to either the codomain or the ''image'' of a function. A codomain is part of a function if is defined as a triple where is called the '' domain'' of , its ''codomain'', and its '' graph''. The set of all elements of the form , where ranges over the elements of the domain , is called the ''image'' of . The image of a function is a subset of its codomain so it might not coincide with it. Namely, a function that is not surjective has elements in its codomain for which the equation does not have a solution. A codomain is not part of a function if is defined as just a graph. For example in set theory it is desirable to permit the domain of a function to be a proper class , in which case there is formally no such thin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Uniformly Cauchy Sequence
In mathematics, a sequence of functions \ from a set ''S'' to a metric space ''M'' is said to be uniformly Cauchy if: * For all \varepsilon > 0, there exists N>0 such that for all x\in S: d(f_(x), f_(x)) N. Another way of saying this is that d_u (f_, f_) \to 0 as m, n \to \infty, where the uniform distance d_u between two functions is defined by :d_ (f, g) := \sup_ d (f(x), g(x)). Convergence criteria A sequence of functions from ''S'' to ''M'' is pointwise Cauchy if, for each ''x'' ∈ ''S'', the sequence is a Cauchy sequence in ''M''. This is a weaker condition than being uniformly Cauchy. In general a sequence can be pointwise Cauchy and not pointwise convergent, or it can be uniformly Cauchy and not uniformly convergent. Nevertheless, if the metric space ''M'' is complete, then any pointwise Cauchy sequence converges pointwise to a function from ''S'' to ''M''. Similarly, any uniformly Cauchy sequence will tend uniformly to such a function. The uniform Cauchy pro ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Uniform Convergence
In the mathematical field of analysis, uniform convergence is a mode of convergence of functions stronger than pointwise convergence. A sequence of functions (f_n) converges uniformly to a limiting function f on a set E as the function domain if, given any arbitrarily small positive number \varepsilon, a number N can be found such that each of the functions f_N, f_,f_,\ldots differs from f by no more than \varepsilon ''at every point'' x ''in'' E. Described in an informal way, if f_n converges to f uniformly, then how quickly the functions f_n approach f is "uniform" throughout E in the following sense: in order to guarantee that f_n(x) differs from f(x) by less than a chosen distance \varepsilon, we only need to make sure that n is larger than or equal to a certain N, which we can find without knowing the value of x\in E in advance. In other words, there exists a number N=N(\varepsilon) that could depend on \varepsilon but is ''independent of x'', such that choosing n\geq N wi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pointwise Convergence
In mathematics, pointwise convergence is one of Modes of convergence (annotated index), various senses in which a sequence of function (mathematics), functions can Limit (mathematics), converge to a particular function. It is weaker than uniform convergence, to which it is often compared. Definition Suppose that X is a set and Y is a topological space, such as the Real number, real or complex numbers or a metric space, for example. A sequence of Function (mathematics), functions \left(f_n\right) all having the same domain X and codomain Y is said to converge pointwise to a given function f : X \to Y often written as \lim_ f_n = f\ \mbox if (and only if) the limit of a sequence, limit of the sequence f_n(x) evaluated at each point x in the domain of f is equal to f(x), written as \forall x \in X, \lim_ f_n(x) = f(x). The function f is said to be the pointwise limit function of the \left(f_n\right). The definition easily generalizes from sequences to Net (mathematics), nets f_\bull ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Domain Of A Function
In mathematics, the domain of a function is the Set (mathematics), set of inputs accepted by the Function (mathematics), function. It is sometimes denoted by \operatorname(f) or \operatornamef, where is the function. In layman's terms, the domain of a function can generally be thought of as "what x can be". More precisely, given a function f\colon X\to Y, the domain of is . In modern mathematical language, the domain is part of the definition of a function rather than a property of it. In the special case that and are both sets of real numbers, the function can be graphed in the Cartesian coordinate system. In this case, the domain is represented on the -axis of the graph, as the projection of the graph of the function onto the -axis. For a function f\colon X\to Y, the set is called the ''codomain'': the set to which all outputs must belong. The set of specific outputs the function assigns to elements of is called its ''Range of a function, range'' or ''Image (mathematic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Banach Space
In mathematics, more specifically in functional analysis, a Banach space (, ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space. Banach spaces are named after the Polish mathematician Stefan Banach, who introduced this concept and studied it systematically in 1920–1922 along with Hans Hahn and Eduard Helly. Maurice René Fréchet was the first to use the term "Banach space" and Banach in turn then coined the term " Fréchet space". Banach spaces originally grew out of the study of function spaces by Hilbert, Fréchet, and Riesz earlier in the century. Banach spaces play a central role in functional analysis. In other areas of analysis, the spaces under study are often Banach spaces. Definition A Banach space is a complete nor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Triangle Inequality
In mathematics, the triangle inequality states that for any triangle, the sum of the lengths of any two sides must be greater than or equal to the length of the remaining side. This statement permits the inclusion of Degeneracy (mathematics)#Triangle, degenerate triangles, but some authors, especially those writing about elementary geometry, will exclude this possibility, thus leaving out the possibility of equality. If , , and are the lengths of the sides of a triangle then the triangle inequality states that :c \leq a + b , with equality only in the degenerate case of a triangle with zero area. In Euclidean geometry and some other geometries, the triangle inequality is a theorem about vectors and vector lengths (Norm (mathematics), norms): :\, \mathbf u + \mathbf v\, \leq \, \mathbf u\, + \, \mathbf v\, , where the length of the third side has been replaced by the length of the vector sum . When and are real numbers, they can be viewed as vectors in \R^1, and the triang ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Absolute Convergence
In mathematics, an infinite series of numbers is said to converge absolutely (or to be absolutely convergent) if the sum of the absolute values of the summands is finite. More precisely, a real or complex series \textstyle\sum_^\infty a_n is said to converge absolutely if \textstyle\sum_^\infty \left, a_n\ = L for some real number \textstyle L. Similarly, an improper integral of a function, \textstyle\int_0^\infty f(x)\,dx, is said to converge absolutely if the integral of the absolute value of the integrand is finite—that is, if \textstyle\int_0^\infty , f(x), dx = L. A convergent series that is not absolutely convergent is called conditionally convergent. Absolute convergence is important for the study of infinite series, because its definition guarantees that a series will have some "nice" behaviors of finite sums that not all convergent series possess. For instance, rearrangements do not change the value of the sum, which is not necessarily true for conditionally converge ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vector Space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called scalar (mathematics), ''scalars''. The operations of vector addition and scalar multiplication must satisfy certain requirements, called ''vector axioms''. Real vector spaces and complex vector spaces are kinds of vector spaces based on different kinds of scalars: real numbers and complex numbers. Scalars can also be, more generally, elements of any field (mathematics), field. Vector spaces generalize Euclidean vectors, which allow modeling of Physical quantity, physical quantities (such as forces and velocity) that have not only a Magnitude (mathematics), magnitude, but also a Orientation (geometry), direction. The concept of vector spaces is fundamental for linear algebra, together with the concept of matrix (mathematics), matrices, which ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Unconditional Convergence
In mathematics, specifically functional analysis, a series is unconditionally convergent if all reorderings of the series converge to the same value. In contrast, a series is conditional convergence, conditionally convergent if it converges but different orderings do not all converge to that same value. Unconditional convergence is equivalent to absolute convergence in Dimension (vector space), finite-dimensional vector spaces, but is a weaker property in infinite dimensions. Definition Let X be a topological vector space. Let I be an index set and x_i \in X for all i \in I. The series \textstyle \sum_ x_i is called unconditionally convergent to x \in X, if * the indexing set I_0 := \left\ is countable, and * for every permutation (bijection) \sigma : I_0 \to I_0 of I_0 = \left\_^\infty the following relation holds: \sum_^\infty x_ = x. Alternative definition Unconditional convergence is often defined in an equivalent way: A series is unconditionally convergent if for every sequ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |