Milnor's Theorem On Kan Complexes
   HOME





Milnor's Theorem On Kan Complexes
In mathematics, especially algebraic topology, a theorem of Milnor says that the geometric realization functor from the homotopy category of the category Kan of Kan complexes to the homotopy category of the category Top of (reasonable) topological spaces is fully faithful. The theorem in particular implies Kan and Top have the same homotopy category. In today’s language, Kan is typically identified as ∞-Grpd, the category of ∞-groupoids. Thus, the theorem can be viewed as an instance of Grothendieck's homotopy hypothesis which says ∞-groupoids are spaces (or that they can model spaces from the homotopy theory point of view). The pointed version of the theorem is also true. Proof A key step in the proof of the theorem is the following result (which is also sometimes called Milnor's theorem): Indeed, the above says that \eta : \operatorname \to \operatorname(, -, ) is invertible on the homotopy category or, equivalently, , - , is fully faithful there. References ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up to homeomorphism, though usually most classify up to Homotopy#Homotopy equivalence and null-homotopy, homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group. Main branches Below are some of the main areas studied in algebraic topology: Homotopy groups In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy groups record information ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homotopy Category
In mathematics, the homotopy category is a category built from the category of topological spaces which in a sense identifies two spaces that have the same shape. The phrase is in fact used for two different (but related) categories, as discussed below. More generally, instead of starting with the category of topological spaces, one may start with any model category and define its associated homotopy category, with a construction introduced by Quillen in 1967. In this way, homotopy theory can be applied to many other categories in geometry and algebra. The naive homotopy category The category of topological spaces Top has topological spaces as objects and as morphisms the continuous maps between them. The older definition of the homotopy category hTop, called the naive homotopy category for clarity in this article, has the same objects, and a morphism is a homotopy class of continuous maps. That is, two continuous maps ''f'' : ''X'' → ''Y'' are considered the same in the na ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kan Complex
In mathematics, Kan complexes and Kan fibrations are part of the theory of simplicial sets. Kan fibrations are the fibrations of the standard model category structure on simplicial sets and are therefore of fundamental importance. Kan complexes are the fibrant objects in this model category. The name is in honor of Daniel Kan. For various kinds of fibrations for simplicial sets, see Fibration of simplicial sets. Definitions Definition of the standard n-simplex For each ''n'' â‰¥ 0, recall that the standard n-simplex, \Delta^n, is the representable simplicial set :\Delta^n(i) = \mathrm_ ( Applying the geometric realization functor to this simplicial set gives a space homeomorphic to the topological standard n-simplex: the convex subspace of \mathbb^ consisting of all points (t_0,\dots,t_n) such that the coordinates are non-negative and sum to 1. Definition of a horn For each ''k'' â‰¤ ''n'', this has a subcomplex \Lambda^n_k, the ''k''-th horn ins ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fully Faithful
In category theory, a faithful functor is a functor that is injective on hom-sets, and a full functor is surjective on hom-sets. A functor that has both properties is called a fully faithful functor. Formal definitions Explicitly, let ''C'' and ''D'' be (locally small) categories and let ''F'' : ''C'' → ''D'' be a functor from ''C'' to ''D''. The functor ''F'' induces a function :F_\colon\mathrm_(X,Y)\rightarrow\mathrm_(F(X),F(Y)) for every pair of objects ''X'' and ''Y'' in ''C''. The functor ''F'' is said to be *faithful if ''F''''X'',''Y'' is injectiveJacobson (2009), p. 22 *full if ''F''''X'',''Y'' is surjectiveMac Lane (1971), p. 14 *fully faithful (= full and faithful) if ''F''''X'',''Y'' is bijective for each ''X'' and ''Y'' in ''C''. Properties A faithful functor need not be injective on objects or morphisms. That is, two objects ''X'' and ''X''′ may map to the same object in ''D'' (which is why the range of a full and faithful functor is not necessarily isomorphic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


∞-groupoid
In category theory, a branch of mathematics, an ∞-groupoid is an abstract homotopical model for topological spaces. One model uses Kan complexes which are fibrant objects in the category (mathematics), category of simplicial sets (with the standard model category, model structure). It is an ∞-category generalization of a groupoid, a category in which every morphism is an isomorphism. The homotopy hypothesis states that ∞-groupoids are equivalent to spaces up to homotopy. Globular Groupoids Alexander Grothendieck suggested in ''Pursuing Stacks'' that there should be an extraordinarily simple model of ∞-groupoids using globular sets, originally called hemispherical complexes. These sets are constructed as Sheaf (mathematics)#Presheaves, presheaves on the globular category \mathbb. This is defined as the category whose objects are finite ordinals [n] and morphisms are given by \begin \sigma_n: [n] \to [n+1]\\ \tau_n: [n] \to [n+1] \end such that the globular relations hold \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Homotopy Hypothesis
In category theory, a branch of mathematics, Grothendieck's homotopy hypothesis states, homotopy theory speaking, that the ∞-groupoids are space (mathematics), spaces. One version of the hypothesis was claimed to be proved in the 1991 paper by Mikhail Kapranov, Kapranov and Vladimir Voevodsky, Voevodsky. Their proof turned out to be flawed and their result in the form interpreted by Carlos Simpson is now known as the Simpson conjecture. In higher category theory, one considers a space-valued presheaf instead of a presheaf (category theory), set-valued presheaf in ordinary category theory. In view of homotopy hypothesis, a space here can be taken to an ∞-groupoid. Formulations A precise formulation of the hypothesis very strongly depends on the definition of an ∞-groupoid. One definition is that, mimicking the ordinary category case, an ∞-groupoid is an ∞-category in which each morphism is invertible or equivalently its homotopy category of an ∞-category, homotopy cat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homotopy Theory
In mathematics, homotopy theory is a systematic study of situations in which Map (mathematics), maps can come with homotopy, homotopies between them. It originated as a topic in algebraic topology, but nowadays is learned as an independent discipline. Applications to other fields of mathematics Besides algebraic topology, the theory has also been used in other areas of mathematics such as: * Algebraic geometry (e.g., A1 homotopy theory, A1 homotopy theory) * Category theory (specifically the study of higher category theory, higher categories) Concepts Spaces and maps In homotopy theory and algebraic topology, the word "space" denotes a topological space. In order to avoid Pathological (mathematics), pathologies, one rarely works with arbitrary spaces; instead, one requires spaces to meet extra constraints, such as being Category of compactly generated weak Hausdorff spaces, compactly generated weak Hausdorff or a CW complex. In the same vein as above, a "Map (mathematics), ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Unit Of Adjunction
In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint. Pairs of adjoint functors are ubiquitous in mathematics and often arise from constructions of "optimal solutions" to certain problems (i.e., constructions of objects having a certain universal property), such as the construction of a free group on a set in algebra, or the construction of the Stone–Čech compactification of a topological space in topology. By definition, an adjunction between categories \mathcal and \mathcal is a pair of functors (assumed to be covariant) :F: \mathcal \rightarrow \mathcal and G: \mathcal \rightarrow \mathcal and, for all objects c in \mathcal and d in \mathcal, a bijection between the respective morphism sets :\mat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]