Mills' Constant
In number theory, Mills' constant is defined as the smallest positive real number ''A'' such that the floor function of the double exponential function : \left\lfloor A^ \right\rfloor is a prime number for all positive natural numbers ''n''. This constant is named after William Harold Mills who proved in 1947 the existence of ''A'' based on results of Guido Hoheisel and Albert Ingham on the prime gaps. Its value is unproven, but if the Riemann hypothesis is true, it is approximately 1.3063778838630806904686144926... . Mills primes The primes generated by Mills' constant are known as Mills primes; if the Riemann hypothesis is true, the sequence begins :2, 11, 1361, 2521008887, 16022236204009818131831320183, :4113101149215104800030529537915953170486139623539759933135949994882770404074832568499, \ldots . If ''ai'' denotes the ''i'' th prime in this sequence, then ''ai'' can be calculated as the smallest prime number larger than a_^3. In order to ensure that rounding A ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Number Theory
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example, rational numbers), or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory can often be understood through the study of Complex analysis, analytical objects, such as the Riemann zeta function, that encode properties of the integers, primes or other number-theoretic objects in some fashion (analytic number theory). One may also study real numbers in relation to rational numbers, as for instance how irrational numbers can be approximated by fractions (Diophantine approximation). Number theory is one of the oldest branches of mathematics alongside geometry. One quirk of number theory is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Probable Prime
In number theory, a probable prime (PRP) is an integer that satisfies a specific condition that is satisfied by all prime numbers, but which is not satisfied by most composite numbers. Different types of probable primes have different specific conditions. While there may be probable primes that are composite (called pseudoprimes), the condition is generally chosen in order to make such exceptions rare. Fermat's test for compositeness, which is based on Fermat's little theorem, works as follows: given an integer ''n'', choose some integer ''a'' that is not a multiple of ''n''; (typically, we choose ''a'' in the range ). Calculate . If the result is not 1, then ''n'' is composite. If the result is 1, then ''n'' is likely to be prime; ''n'' is then called a probable prime to base ''a''. A weak probable prime to base ''a'' is an integer that is a probable prime to base ''a'', but which is not a strong probable prime to base ''a'' (see below). For a fixed base ''a'', it is unusual fo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Acta Mathematica Hungarica
'' Acta Mathematica Hungarica'' is a peer-reviewed mathematics journal of the Hungarian Academy of Sciences, published by Akadémiai Kiadó and Springer Science+Business Media. The journal was established in 1950 and publishes articles on mathematics related to work by Hungarian mathematicians. Its 2009 MCQ was 0.39, and its 2015 impact factor was 0.469. The editor-in-chief is Imre Bárány, honorary editor is Ákos Császár, the editors are the mathematician members of the Hungarian Academy of Sciences. Abstracting and indexing According to the ''Journal Citation Reports'', the journal had a 2021 impact factor of 0.979. This journal is indexed by the following services: * Science Citation Index * Journal Citation Reports/Science Edition * Scopus * Mathematical Reviews * Zentralblatt Math zbMATH Open, formerly Zentralblatt MATH, is a major reviewing service providing reviews and abstracts for articles in pure and applied mathematics, produced by the Berlin office of F ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bulletin Of The American Mathematical Society
The ''Bulletin of the American Mathematical Society'' is a quarterly mathematical journal published by the American Mathematical Society. Scope It publishes surveys on contemporary research topics, written at a level accessible to non-experts. It also publishes, by invitation only, book reviews and short ''Mathematical Perspectives'' articles. History It began as the ''Bulletin of the New York Mathematical Society'' and underwent a name change when the society became national. The Bulletin's function has changed over the years; its original function was to serve as a research journal for its members. Indexing The Bulletin is indexed in Mathematical Reviews, Science Citation Index, ISI Alerting Services, CompuMath Citation Index, and Current Contents/Physical, Chemical & Earth Sciences. See also *'' Journal of the American Mathematical Society'' *'' Memoirs of the American Mathematical Society'' *'' Notices of the American Mathematical Society'' *'' Proceedings of the Ame ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Formula For Primes
In number theory, a formula for primes is a formula generating the prime numbers, exactly and without exception. Formulas for calculating primes do exist; however, they are computationally very slow. A number of constraints are known, showing what such a "formula" can and cannot be. Formulas based on Wilson's theorem A simple formula is :f(n) = \left\lfloor \frac \right\rfloor (n-1) + 2 for positive integer n, where \lfloor\ \rfloor is the floor function, which rounds down to the nearest integer. By Wilson's theorem, n+1 is prime if and only if n! \equiv n \!\!\!\pmod. Thus, when n+1 is prime, the first factor in the product becomes one, and the formula produces the prime number n+1. But when n+1 is not prime, the first factor becomes zero and the formula produces the prime number 2. This formula is not an efficient way to generate prime numbers because evaluating n! \bmod (n+1) requires about n-1 multiplications and reductions modulo n+1. In 1964, Willans gave the formula :p_n = ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
American Mathematical Monthly
''The American Mathematical Monthly'' is a peer-reviewed scientific journal of mathematics. It was established by Benjamin Finkel in 1894 and is published by Taylor & Francis on behalf of the Mathematical Association of America. It is an expository journal intended for a wide audience of mathematicians, from undergraduate students to research professionals. Articles are chosen on the basis of their broad interest and reviewed and edited for quality of exposition as well as content. The editor-in-chief An editor-in-chief (EIC), also known as lead editor or chief editor, is a publication's editorial leader who has final responsibility for its operations and policies. The editor-in-chief heads all departments of the organization and is held accoun ... is Vadim Ponomarenko ( San Diego State University). The journal gives the Lester R. Ford Award annually to "authors of articles of expository excellence" published in the journal. Editors-in-chief The following persons are or have ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ceiling Function
In mathematics, the floor function is the function that takes as input a real number , and gives as output the greatest integer less than or equal to , denoted or . Similarly, the ceiling function maps to the least integer greater than or equal to , denoted or . For example, for floor: , , and for ceiling: , and . The floor of is also called the integral part, integer part, greatest integer, or entier of , and was historically denoted (among other notations). However, the same term, ''integer part'', is also used for truncation towards zero, which differs from the floor function for negative numbers. For an integer , . Although and produce graphs that appear exactly alike, they are not the same when the value of is an exact integer. For example, when , . However, if , then , while . Notation The ''integral part'' or ''integer part'' of a number ( in the original) was first defined in 1798 by Adrien-Marie Legendre in his proof of the Legendre's formula. Ca ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Legendre's Conjecture
Legendre's conjecture, proposed by Adrien-Marie Legendre, states that there is a prime number between n^2 and (n+1)^2 for every positive integer n. The conjecture is one of Landau's problems (1912) on prime numbers, and is one of many open problems on the spacing of prime numbers. Prime gaps If Legendre's conjecture is true, the gap between any prime ''p'' and the next largest prime would be O(\sqrt\,), as expressed in big O notation. It is one of a family of results and conjectures related to prime gaps, that is, to the spacing between prime numbers. Others include Bertrand's postulate, on the existence of a prime between n and 2n, Oppermann's conjecture on the existence of primes between n^2, n(n+1), and (n+1)^2, Andrica's conjecture and Brocard's conjecture on the existence of primes between squares of consecutive primes, and Cramér's conjecture that the gaps are always much smaller, of the order (\log p)^2. If Cramér's conjecture is true, Legendre's conjecture would ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Function (mathematics)
In mathematics, a function from a set (mathematics), set to a set assigns to each element of exactly one element of .; the words ''map'', ''mapping'', ''transformation'', ''correspondence'', and ''operator'' are sometimes used synonymously. The set is called the Domain of a function, domain of the function and the set is called the codomain of the function. Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a ''function'' of time. History of the function concept, Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable function, differentiable (that is, they had a high degree of regularity). The concept of a function was formalized at the end of the 19th century in terms of set theory, and this greatly increased the possible applications of the concept. A f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Irrational Number
In mathematics, the irrational numbers are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two integers. When the ratio of lengths of two line segments is an irrational number, the line segments are also described as being '' incommensurable'', meaning that they share no "measure" in common, that is, there is no length ("the measure"), no matter how short, that could be used to express the lengths of both of the two given segments as integer multiples of itself. Among irrational numbers are the ratio of a circle's circumference to its diameter, Euler's number ''e'', the golden ratio ''φ'', and the square root of two. In fact, all square roots of natural numbers, other than of perfect squares, are irrational. Like all real numbers, irrational numbers can be expressed in positional notation, notably as a decimal number. In the case of irrational numbers, the decimal expansion does not terminate, nor end ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Closed-form Expression
In mathematics, an expression or equation is in closed form if it is formed with constants, variables, and a set of functions considered as ''basic'' and connected by arithmetic operations (, and integer powers) and function composition. Commonly, the basic functions that are allowed in closed forms are ''n''th root, exponential function, logarithm, and trigonometric functions. However, the set of basic functions depends on the context. For example, if one adds polynomial roots to the basic functions, the functions that have a closed form are called elementary functions. The ''closed-form problem'' arises when new ways are introduced for specifying mathematical objects, such as limits, series, and integrals: given an object specified with such tools, a natural problem is to find, if possible, a ''closed-form expression'' of this object; that is, an expression of this object in terms of previous ways of specifying it. Example: roots of polynomials The quadratic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Provable Prime
In number theory, a provable prime is an integer that has been calculated to be prime number, prime using a primality-proving algorithm. Boot-strapping techniques using Pocklington primality test are the most common ways to generate provable primes for cryptography. Contrast with probable prime, which is likely (but not certain) to be prime, based on the output of a probabilistic algorithm, probabilistic primality test. In principle, every prime number can be proved to be prime in polynomial time by using the AKS primality test. Other methods which guarantee that their result is prime, but which do not work for all primes, are useful for the random generation of provable primes. Provable primes have also been generated on embedded devices. See also *Probable prime *Primality test References {{num-stub Primality tests Prime numbers ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |