Michael's Theorem On Paracompact Spaces
   HOME





Michael's Theorem On Paracompact Spaces
In mathematics, Michael's theorem gives sufficient conditions for a regular topological space (in fact, for a T1-space) to be paracompact In mathematics, a paracompact space is a topological space in which every open cover has an open Cover (topology)#Refinement, refinement that is locally finite collection, locally finite. These spaces were introduced by . Every compact space is par .... Statement A family E_i of subsets of a topological space is said to be closure-preserving if for every subfamily E_, :\overline = \bigcup \overline. For example, a locally finite family of subsets has this property. With this terminology, the theorem states: Frequently, the theorem is stated in the following form: In particular, a regular-Hausdorff Lindelöf space is paracompact. The proof of the theorem uses the following result which does not need regularity: Proof sketch The proof of the proposition uses the following general lemma Notes References * * * Further read ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Space
In topology and related fields of mathematics, a topological space ''X'' is called a regular space if every closed subset ''C'' of ''X'' and a point ''p'' not contained in ''C'' have non-overlapping open neighborhoods. Thus ''p'' and ''C'' can be separated by neighborhoods. This condition is known as Axiom T3. The term "T3 space" usually means "a regular Hausdorff space". These conditions are examples of separation axioms. Definitions A topological space ''X'' is a regular space if, given any closed set ''F'' and any point ''x'' that does not belong to ''F'', there exists a neighbourhood ''U'' of ''x'' and a neighbourhood ''V'' of ''F'' that are disjoint. Concisely put, it must be possible to separate ''x'' and ''F'' with disjoint neighborhoods. A or is a topological space that is both regular and a Hausdorff space. (A Hausdorff space or T2 space is a topological space in which any two distinct points are separated by neighbourhoods.) It turns out that a space is T3 i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Space
In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a topological space is a Set (mathematics), set whose elements are called Point (geometry), points, along with an additional structure called a topology, which can be defined as a set of Neighbourhood (mathematics), neighbourhoods for each point that satisfy some Axiom#Non-logical axioms, axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a space (mathematics), mathematical space that allows for the definition of Limit (mathematics), limits, Continuous function (topology), continuity, and Connected space, connectedness. Common types ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


T1 Space
In topology and related branches of mathematics, a T1 space is a topological space in which, for every pair of distinct points, each has a neighborhood not containing the other point. An R0 space is one in which this holds for every pair of topologically distinguishable points. The properties T1 and R0 are examples of separation axioms. Definitions Let ''X'' be a topological space and let ''x'' and ''y'' be points in ''X''. We say that ''x'' and ''y'' are if each lies in a neighbourhood that does not contain the other point. * ''X'' is called a T1 space if any two distinct points in ''X'' are separated. * ''X'' is called an R0 space if any two topologically distinguishable points in ''X'' are separated. A T1 space is also called an accessible space or a space with Fréchet topology and an R0 space is also called a symmetric space. (The term also has an entirely different meaning in functional analysis. For this reason, the term ''T1 space'' is preferred. There is also a n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Paracompact Space
In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by . Every compact space is paracompact. Every paracompact Hausdorff space is normal, and a Hausdorff space is paracompact if and only if it admits partitions of unity subordinate to any open cover. Sometimes paracompact spaces are defined so as to always be Hausdorff. Every closed subspace of a paracompact space is paracompact. While compact subsets of Hausdorff spaces are always closed, this is not true for paracompact subsets. A space such that every subspace of it is a paracompact space is called hereditarily paracompact. This is equivalent to requiring that every open subspace be paracompact. The notion of paracompact space is also studied in pointless topology, where it is more well-behaved. For example, the product of any number of paracompact locales is a paracompact locale, but the product of two paracomp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lindelöf Space
In mathematics, a Lindelöf space is a topological space in which every open cover has a countable subcover. The Lindelöf property is a weakening of the more commonly used notion of ''compactness'', which requires the existence of a ''finite'' subcover. A is a topological space such that every subspace of it is Lindelöf. Such a space is sometimes called strongly Lindelöf, but confusingly that terminology is sometimes used with an altogether different meaning. The term ''hereditarily Lindelöf'' is more common and unambiguous. Lindelöf spaces are named after the Finnish mathematician Ernst Leonard Lindelöf. Properties of Lindelöf spaces * Every compact space, and more generally every σ-compact space, is Lindelöf. In particular, every countable space is Lindelöf. * A Lindelöf space is compact if and only if it is countably compact. * Every second-countable space is Lindelöf, but not conversely. For example, there are many compact spaces that are not second-counta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]