HOME
*





Lebesgue's Decomposition Theorem
In mathematics, more precisely in measure theory, Lebesgue's decomposition theorem states that for every two σ-finite signed measures \mu and \nu on a measurable space (\Omega,\Sigma), there exist two σ-finite signed measures \nu_0 and \nu_1 such that: * \nu=\nu_0+\nu_1\, * \nu_0\ll\mu (that is, \nu_0 is absolutely continuous with respect to \mu) * \nu_1\perp\mu (that is, \nu_1 and \mu are singular). These two measures are uniquely determined by \mu and \nu. Refinement Lebesgue's decomposition theorem can be refined in a number of ways. First, the decomposition of the singular part of a regular Borel measure on the real line can be refined: :\, \nu = \nu_ + \nu_ + \nu_ where * ''ν''cont is the absolutely continuous part * ''ν''sing is the singular continuous part * ''ν''pp is the pure point part (a discrete measure). Second, absolutely continuous measures are classified by the Radon–Nikodym theorem, and discrete measures are easily understood. Hence (singular continuou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and mathematical analysis, analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of mathematical object, abstract objects and the use of pure reason to proof (mathematics), prove them. These objects consist of either abstraction (mathematics), abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of inference rule, deductive rules to already established results. These results include previously proved theorems, axioms ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cantor Function
In mathematics, the Cantor function is an example of a function that is continuous, but not absolutely continuous. It is a notorious counterexample in analysis, because it challenges naive intuitions about continuity, derivative, and measure. Though it is continuous everywhere and has zero derivative almost everywhere, its value still goes from 0 to 1 as its argument reaches from 0 to 1. Thus, in one sense the function seems very much like a constant one which cannot grow, and in another, it does indeed monotonically grow. It is also called the Cantor ternary function, the Lebesgue function, Lebesgue's singular function, the Cantor–Vitali function, the Devil's staircase, the Cantor staircase function, and the Cantor–Lebesgue function. introduced the Cantor function and mentioned that Scheeffer pointed out that it was a counterexample to an extension of the fundamental theorem of calculus claimed by Harnack. The Cantor function was discussed and popularized by , and . De ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graduate Texts In Mathematics
Graduate Texts in Mathematics (GTM) (ISSN 0072-5285) is a series of graduate-level textbooks in mathematics published by Springer-Verlag. The books in this series, like the other Springer-Verlag mathematics series, are yellow books of a standard size (with variable numbers of pages). The GTM series is easily identified by a white band at the top of the book. The books in this series tend to be written at a more advanced level than the similar Undergraduate Texts in Mathematics series, although there is a fair amount of overlap between the two series in terms of material covered and difficulty level. List of books #''Introduction to Axiomatic Set Theory'', Gaisi Takeuti, Wilson M. Zaring (1982, 2nd ed., ) #''Measure and Category – A Survey of the Analogies between Topological and Measure Spaces'', John C. Oxtoby (1980, 2nd ed., ) #''Topological Vector Spaces'', H. H. Schaefer, M. P. Wolff (1999, 2nd ed., ) #''A Course in Homological Algebra'', Peter Hilton, Urs Stamm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hahn Decomposition Theorem
In mathematics, the Hahn decomposition theorem, named after the Austrian mathematician Hans Hahn (mathematician), Hans Hahn, states that for any sigma-algebra, measurable space (X,\Sigma) and any signed measure \mu defined on the \sigma -algebra \Sigma , there exist two \Sigma -measurable sets, P and N , of X such that: # P \cup N = X and P \cap N = \varnothing . # For every E \in \Sigma such that E \subseteq P , one has \mu(E) \geq 0 , i.e., P is a positive and negative sets, positive set for \mu . # For every E \in \Sigma such that E \subseteq N , one has \mu(E) \leq 0 , i.e., N is a negative set for \mu . Moreover, this decomposition is universal property, essentially unique, meaning that for any other pair (P',N') of \Sigma -measurable subsets of X fulfilling the three conditions above, the symmetric differences P \triangle P' and N \triangle N' are \mu -null sets in the strong sense that every \Sigma -measurable subset of them has zero ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Decomposition Of Spectrum (functional Analysis)
The spectrum of a linear operator T that operates on a Banach space X (a fundamental concept of functional analysis) consists of all scalars \lambda such that the operator T-\lambda does not have a bounded inverse on X. The spectrum has a standard decomposition into three parts: * a point spectrum, consisting of the eigenvalues of T; * a continuous spectrum, consisting of the scalars that are not eigenvalues but make the range of T-\lambda a proper dense subset of the space; * a residual spectrum, consisting of all other scalars in the spectrum. This decomposition is relevant to the study of differential equations, and has applications to many branches of science and engineering. A well-known example from quantum mechanics is the explanation for the discrete spectral lines and the continuous band in the light emitted by excited atoms of hydrogen. Decomposition into point spectrum, continuous spectrum, and residual spectrum For bounded Banach space operators Let ''X'' b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Martingale (probability Theory)
In probability theory, a martingale is a sequence of random variables (i.e., a stochastic process) for which, at a particular time, the conditional expectation of the next value in the sequence is equal to the present value, regardless of all prior values. History Originally, '' martingale'' referred to a class of betting strategies that was popular in 18th-century France. The simplest of these strategies was designed for a game in which the gambler wins their stake if a coin comes up heads and loses it if the coin comes up tails. The strategy had the gambler double their bet after every loss so that the first win would recover all previous losses plus win a profit equal to the original stake. As the gambler's wealth and available time jointly approach infinity, their probability of eventually flipping heads approaches 1, which makes the martingale betting strategy seem like a sure thing. However, the exponential growth of the bets eventually bankrupts its users due to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Square Integrable
In mathematics, a square-integrable function, also called a quadratically integrable function or L^2 function or square-summable function, is a real- or complex-valued measurable function for which the integral of the square of the absolute value is finite. Thus, square-integrability on the real line (-\infty,+\infty) is defined as follows. One may also speak of quadratic integrability over bounded intervals such as ,b/math> for a \leq b. An equivalent definition is to say that the square of the function itself (rather than of its absolute value) is Lebesgue integrable. For this to be true, the integrals of the positive and negative portions of the real part must both be finite, as well as those for the imaginary part. The vector space of square integrable functions (with respect to Lebesgue measure) forms the ''Lp'' space with p=2. Among the ''Lp'' spaces, the class of square integrable functions is unique in being compatible with an inner product, which allows notions lik ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compound Poisson Process
A compound Poisson process is a continuous-time (random) stochastic process with jumps. The jumps arrive randomly according to a Poisson process and the size of the jumps is also random, with a specified probability distribution. A compound Poisson process, parameterised by a rate \lambda > 0 and jump size distribution ''G'', is a process \ given by :Y(t) = \sum_^ D_i where, \ is a counting of a Poisson process with rate \lambda, and \ are independent and identically distributed random variables, with distribution function ''G'', which are also independent of \.\, When D_i are non-negative integer-valued random variables, then this compound Poisson process is known as a stuttering Poisson process which has the feature that two or more events occur in a very short time. Properties of the compound Poisson process The expected value of a compound Poisson process can be calculated using a result known as Wald's equation as: :\operatorname E(Y(t)) = \operatorname E(D_1 + \cdo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Brownian Motion
Brownian motion, or pedesis (from grc, πήδησις "leaping"), is the random motion of particles suspended in a medium (a liquid or a gas). This pattern of motion typically consists of random fluctuations in a particle's position inside a fluid sub-domain, followed by a relocation to another sub-domain. Each relocation is followed by more fluctuations within the new closed volume. This pattern describes a fluid at thermal equilibrium, defined by a given temperature. Within such a fluid, there exists no preferential direction of flow (as in transport phenomena). More specifically, the fluid's overall linear and angular momenta remain null over time. The kinetic energies of the molecular Brownian motions, together with those of molecular rotations and vibrations, sum up to the caloric component of a fluid's internal energy (the equipartition theorem). This motion is named after the botanist Robert Brown, who first described the phenomenon in 1827, while looking t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lévy Process
In probability theory, a Lévy process, named after the French mathematician Paul Lévy, is a stochastic process with independent, stationary increments: it represents the motion of a point whose successive displacements are random, in which displacements in pairwise disjoint time intervals are independent, and displacements in different time intervals of the same length have identical probability distributions. A Lévy process may thus be viewed as the continuous-time analog of a random walk. The most well known examples of Lévy processes are the Wiener process, often called the Brownian motion process, and the Poisson process. Further important examples include the Gamma process, the Pascal process, and the Meixner process. Aside from Brownian motion with drift, all other proper (that is, not deterministic) Lévy processes have discontinuous paths. All Lévy processes are additive processes. Mathematical definition A stochastic process X=\ is said to be a Lévy process if ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stochastic Processes
In probability theory and related fields, a stochastic () or random process is a mathematical object usually defined as a family of random variables. Stochastic processes are widely used as mathematical models of systems and phenomena that appear to vary in a random manner. Examples include the growth of a bacterial population, an electrical current fluctuating due to thermal noise, or the movement of a gas molecule. Stochastic processes have applications in many disciplines such as biology, chemistry, ecology, neuroscience, physics, image processing, signal processing, control theory, information theory, computer science, cryptography and telecommunications. Furthermore, seemingly random changes in financial markets have motivated the extensive use of stochastic processes in finance. Applications and the study of phenomena have in turn inspired the proposal of new stochastic processes. Examples of such stochastic processes include the Wiener process or Brownian m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]