LINPACK Benchmarks
   HOME
*





LINPACK Benchmarks
The LINPACK Benchmarks are a measure of a system's floating-point computing power. Introduced by Jack Dongarra, they measure how fast a computer solves a dense ''n'' by ''n'' system of linear equations ''Ax'' = ''b'', which is a common task in engineering. The latest version of these benchmarks is used to build the TOP500 list, ranking the world's most powerful supercomputers. The aim is to approximate how fast a computer will perform when solving real problems. It is a simplification, since no single computational task can reflect the overall performance of a computer system. Nevertheless, the LINPACK benchmark performance can provide a good correction over the peak performance provided by the manufacturer. The peak performance is the maximal theoretical performance a computer can achieve, calculated as the machine's frequency, in cycles per second, times the number of operations per cycle it can perform. The actual performance will always be lower than the peak perfo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jack Dongarra
Jack Joseph Dongarra (born July 18, 1950) is an American computer scientist and mathematician. He is the American University Distinguished Professor of Computer Science in the Electrical Engineering and Computer Science Department at the University of Tennessee. He holds the position of a Distinguished Research Staff member in the Computer Science and Mathematics Division at Oak Ridge National Laboratory, Turing Fellowship in the School of Mathematics at the University of Manchester, and is an adjunct professor in the Computer Science Department at Rice University. He served as a faculty fellow at the Texas A&M University Institute for Advanced Study (2014–2018). Dongarra is the founding director of the Innovative Computing Laboratory at the University of Tennessee. Education Dongarra received a BSc degree in Mathematics from Chicago State University in 1972 and a MSc degree in Computer Science from the Illinois Institute of Technology in 1973. In 1980, he received PhD in Ap ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Strassen Algorithm
In linear algebra, the Strassen algorithm, named after Volker Strassen, is an algorithm for matrix multiplication. It is faster than the standard matrix multiplication algorithm for large matrices, with a better asymptotic complexity, although the naive algorithm is often better for smaller matrices. The Strassen algorithm is slower than the fastest known algorithms for extremely large matrices, but such galactic algorithms are not useful in practice, as they are much slower for matrices of practical size. For small matrices even faster algorithms exist. Strassen's algorithm works for any ring, such as plus/multiply, but not all semirings, such as min-plus or boolean algebra, where the naive algorithm still works, and so called combinatorial matrix multiplication. History Volker Strassen first published this algorithm in 1969 and thereby proved that the n^3 general matrix multiplication algorithm wasn't optimal. The Strassen algorithm's publication resulted in more resear ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dense Linear System
Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematically, density is defined as mass divided by volume: : \rho = \frac where ''ρ'' is the density, ''m'' is the mass, and ''V'' is the volume. In some cases (for instance, in the United States oil and gas industry), density is loosely defined as its weight per unit volume, although this is scientifically inaccurate – this quantity is more specifically called specific weight. For a pure substance the density has the same numerical value as its mass concentration (chemistry), mass concentration. Different materials usually have different densities, and density may be relevant to buoyancy, purity and packaging. Osmium and iridium are the densest known elements at standard conditions for temperature and pressure. To simplify comparisons of dens ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE