HOME



picture info

List Of Small Groups
The following list in mathematics contains the finite groups of small order of a group, order up to group isomorphism. Counts For ''n'' = 1, 2, … the number of nonisomorphic groups of order ''n'' is : 1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 5, 1, 2, 1, 14, 1, 5, 1, 5, ... For labeled groups, see . Glossary Each group is named by #Small Groups Library, Small Groups library as G''o''''i'', where ''o'' is the order of the group, and ''i'' is the index used to label the group within that order. Common group names: * Z''n'': the cyclic group of order ''n'' (the notation C''n'' is also used; it is isomorphic to the additive group of Z/''n''Z) * Dih''n'': the dihedral group of order 2''n'' (often the notation D''n'' or D2''n'' is used) ** K4: the Klein four-group of order 4, same as and Dih2 * D2''n'': the dihedral group of order 2''n'', the same as Dih''n'' (notation used in section #List of small non-abelian groups, List of small non-abelian groups) * S''n'': the symmetric group of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quaternion Group
In group theory, the quaternion group Q8 (sometimes just denoted by Q) is a nonabelian group, non-abelian group (mathematics), group of Group order, order eight, isomorphic to the eight-element subset \ of the quaternions under multiplication. It is given by the presentation of a group, group presentation :\mathrm_8 = \langle \bar,i,j,k \mid \bar^2 = e, \;i^2 = j^2 = k^2 = ijk = \bar \rangle , where ''e'' is the identity element and commutativity, commutes with the other elements of the group. These relations, discovered by W. R. Hamilton, also generate the quaternions as an algebra over the real numbers. Another presentation of Q8 is :\mathrm_8 = \langle a,b \mid a^4 = e, a^2 = b^2, ba = a^b\rangle. Like many other finite groups, it Inverse Galois problem, can be realized as the #Galois group, Galois group of a certain field of algebraic numbers. Compared to dihedral group The quaternion group Q8 has the same order as the dihedral group Examples of groups#The symmetry ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Presentation Of A Group
In mathematics, a presentation is one method of specifying a group. A presentation of a group ''G'' comprises a set ''S'' of generators—so that every element of the group can be written as a product of powers of some of these generators—and a set ''R'' of relations among those generators. We then say ''G'' has presentation :\langle S \mid R\rangle. Informally, ''G'' has the above presentation if it is the "freest group" generated by ''S'' subject only to the relations ''R''. Formally, the group ''G'' is said to have the above presentation if it is isomorphic to the quotient of a free group on ''S'' by the normal subgroup generated by the relations ''R''. As a simple example, the cyclic group of order ''n'' has the presentation :\langle a \mid a^n = 1\rangle, where 1 is the group identity. This may be written equivalently as :\langle a \mid a^n\rangle, thanks to the convention that terms that do not include an equals sign are taken to be equal to the group identity ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Angle Brackets
A bracket is either of two tall fore- or back-facing punctuation marks commonly used to isolate a segment of text or data from its surroundings. They come in four main pairs of shapes, as given in the box to the right, which also gives their names, that vary between British and American English. "Brackets", without further qualification, are in British English the ... marks and in American English the ... marks. Other symbols are repurposed as brackets in specialist contexts, such as those used by linguists. Brackets are typically deployed in symmetric pairs, and an individual bracket may be identified as a "left" or "right" bracket or, alternatively, an "opening bracket" or "closing bracket", respectively, depending on the directionality of the context. In casual writing and in technical fields such as computing or linguistic analysis of grammar, brackets nest, with segments of bracketed material containing embedded within them other further bracketed sub-segments. The num ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Subgroup
In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group (mathematics), group under a binary operation ∗, a subset of is called a subgroup of if also forms a group under the operation ∗. More precisely, is a subgroup of if the Restriction (mathematics), restriction of ∗ to is a group operation on . This is often denoted , read as " is a subgroup of ". The trivial subgroup of any group is the subgroup consisting of just the identity element. A proper subgroup of a group is a subgroup which is a subset, proper subset of (that is, ). This is often represented notationally by , read as " is a proper subgroup of ". Some authors also exclude the trivial group from being proper (that is, ). If is a subgroup of , then is sometimes called an overgroup of . The same definitions apply more generally when is an arbitrary se ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cycle Graph (algebra)
In group theory, a subfield of abstract algebra, a cycle graph of a group (mathematics), group is an Graph (discrete mathematics), undirected graph that illustrates the various cyclic group, cycles of that group, given a set of Generator (mathematics), generators for the group. Cycle graphs are particularly useful in visualizing the structure of small finite groups. A cycle is the Set (mathematics), set of powers of a given group element ''a'', where ''an'', the ''n''-th power of an element ''a'', is defined as the product of ''a'' multiplied by itself ''n'' times. The element ''a'' is said to ''generate'' the cycle. In a finite group, some non-zero power of ''a'' must be the identity element, group identity, which we denote either as ''e'' or 1; the lowest such power is the order of the element ''a'', the number of distinct elements in the cycle that it generates. In a cycle graph, the cycle is represented as a polygon, with its vertices representing the group elements and its ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Identity Element
In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. For example, 0 is an identity element of the addition of real numbers. This concept is used in algebraic structures such as group (mathematics), groups and ring (mathematics), rings. The term ''identity element'' is often shortened to ''identity'' (as in the case of additive identity and multiplicative identity) when there is no possibility of confusion, but the identity implicitly depends on the binary operation it is associated with. Definitions Let be a set  equipped with a binary operation ∗. Then an element  of  is called a if for all  in , and a if for all  in . If is both a left identity and a right identity, then it is called a , or simply an . An identity with respect to addition is called an Additive identity, (often denoted as 0) and an identity with respect to m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorization, factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow primality test, method of checking the primality of a given number , called trial division, tests whether is a multiple of any integer between 2 and . Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simple Group
SIMPLE Group Limited is a conglomeration of separately run companies that each has its core area in International Consulting. The core business areas are Legal Services, Fiduciary Activities, Banking Intermediation and Corporate Service. The date of incorporation is listed as 1999 by Companies House of Gibraltar, who class it as a holding company A holding company is a company whose primary business is holding a controlling interest in the Security (finance), securities of other companies. A holding company usually does not produce goods or services itself. Its purpose is to own Share ...; however it is understood that SIMPLE Group's business and trading activities date to the second part of the 90s, probably as an incorporated body. SIMPLE Group Limited is a conglomerate that cultivate secrecy, they are not listed on any Stock Exchange and the group is owned by a complicated series of offshore trusts. The Sunday Times stated that SIMPLE Group's interests could be eva ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abelian Group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after the Norwegian mathematician Niels Henrik Abel. The concept of an abelian group underlies many fundamental algebraic structures, such as fields, rings, vector spaces, and algebras. The theory of abelian groups is generally simpler than that of their non-abelian counterparts, and finite abelian groups are very well understood and fully classified. Definition An abelian group is a set A, together with an operation ・ , that combines any two elements a and b of A to form another element of A, denoted a \cdot b. The sym ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Action
In mathematics, a group action of a group G on a set S is a group homomorphism from G to some group (under function composition) of functions from S to itself. It is said that G acts on S. Many sets of transformations form a group under function composition; for example, the rotations around a point in the plane. It is often useful to consider the group as an abstract group, and to say that one has a group action of the abstract group that consists of performing the transformations of the group of transformations. The reason for distinguishing the group from the transformations is that, generally, a group of transformations of a structure acts also on various related structures; for example, the above rotation group also acts on triangles by transforming triangles into triangles. If a group acts on a structure, it will usually also act on objects built from that structure. For example, the group of Euclidean isometries acts on Euclidean space and also on the figures dra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Semidirect Product
In mathematics, specifically in group theory, the concept of a semidirect product is a generalization of a direct product. It is usually denoted with the symbol . There are two closely related concepts of semidirect product: * an ''inner'' semidirect product is a particular way in which a group can be made up of two subgroups, one of which is a normal subgroup. * an ''outer'' semidirect product is a way to construct a new group from two given groups by using the Cartesian product as a set and a particular multiplication operation. As with direct products, there is a natural equivalence between inner and outer semidirect products, and both are commonly referred to simply as ''semidirect products''. For finite groups, the Schur–Zassenhaus theorem provides a sufficient condition for the existence of a decomposition as a semidirect product (also known as splitting extension). Inner semidirect product definitions Given a group with identity element , a subgroup , and a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]