HOME





List Of Mathematical Logic Topics
This is a list of mathematical logic topics, by Wikipedia page. For traditional syllogistic logic, see the list of topics in logic. See also the list of computability and complexity topics for more theory of algorithms. Working foundations * Peano axioms ** Giuseppe Peano * Mathematical induction ** Structural induction ** Recursive definition *Naive set theory ** Element (mathematics) *** Ur-element **Singleton (mathematics) **Simple theorems in the algebra of sets **Algebra of sets ** Power set **Empty set ** Non-empty set ** Empty function * Universe (mathematics) *Axiomatization * Axiomatic system ** Axiom schema * Axiomatic method * Formal system * Mathematical proof ** Direct proof ** Reductio ad absurdum ** Proof by exhaustion ** Constructive proof ** Nonconstructive proof * Tautology * Consistency proof * Arithmetization of analysis * Foundations of mathematics * Formal language *'' Principia Mathematica'' * Hilbert's program * Impredicative * Definable real number *A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and analysis. In the early 20th century it was shaped by David Hilbert's program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in proving consistency. Work in set theory s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Non-empty Set
In mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other theories, its existence can be deduced. Many possible properties of sets are vacuously true for the empty set. Any set other than the empty set is called non-empty. In some textbooks and popularizations, the empty set is referred to as the "null set". However, null set is a distinct notion within the context of measure theory, in which it describes a set of measure zero (which is not necessarily empty). The empty set may also be called the void set. Notation Common notations for the empty set include "", "\emptyset", and "∅". The latter two symbols were introduced by the Bourbaki group (specifically André Weil) in 1939, inspired by the letter Ø in the Danish and Norwegian alphabets. In the past, "0" was occasionally used a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nonconstructive Proof
In mathematics, a constructive proof is a method of proof that demonstrates the existence of a mathematical object by creating or providing a method for creating the object. This is in contrast to a non-constructive proof (also known as an existence proof or ''pure existence theorem''), which proves the existence of a particular kind of object without providing an example. For avoiding confusion with the stronger concept that follows, such a constructive proof is sometimes called an effective proof. A constructive proof may also refer to the stronger concept of a proof that is valid in constructive mathematics. Constructivism is a mathematical philosophy that rejects all proof methods that involve the existence of objects that are not explicitly built. This excludes, in particular, the use of the law of the excluded middle, the axiom of infinity, and the axiom of choice, and induces a different meaning for some terminology (for example, the term "or" has a stronger meaning in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Constructive Proof
In mathematics, a constructive proof is a method of proof that demonstrates the existence of a mathematical object by creating or providing a method for creating the object. This is in contrast to a non-constructive proof (also known as an existence proof or ''pure existence theorem''), which proves the existence of a particular kind of object without providing an example. For avoiding confusion with the stronger concept that follows, such a constructive proof is sometimes called an effective proof. A constructive proof may also refer to the stronger concept of a proof that is valid in constructive mathematics. Constructivism is a mathematical philosophy that rejects all proof methods that involve the existence of objects that are not explicitly built. This excludes, in particular, the use of the law of the excluded middle, the axiom of infinity, and the axiom of choice, and induces a different meaning for some terminology (for example, the term "or" has a stronger meaning in const ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Proof By Exhaustion
Proof by exhaustion, also known as proof by cases, proof by case analysis, complete induction or the brute force method, is a method of mathematical proof in which the statement to be proved is split into a finite number of cases or sets of equivalent cases, and where each type of case is checked to see if the proposition in question holds. This is a method of direct proof. A proof by exhaustion typically contains two stages: # A proof that the set of cases is exhaustive; i.e., that each instance of the statement to be proved matches the conditions of (at least) one of the cases. # A proof of each of the cases. The prevalence of digital computers has greatly increased the convenience of using the method of exhaustion (e.g., the first computer-assisted proof of four color theorem in 1976), though such approaches can also be challenged on the basis of mathematical elegance. Expert systems can be used to arrive at answers to many of the questions posed to them. In theory, the pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reductio Ad Absurdum
In logic, (Latin for "reduction to absurdity"), also known as (Latin for "argument to absurdity") or ''apagogical arguments'', is the form of argument that attempts to establish a claim by showing that the opposite scenario would lead to absurdity or contradiction. This argument form traces back to Ancient Greek philosophy and has been used throughout history in both formal mathematical and philosophical reasoning, as well as in debate. Examples The "absurd" conclusion of a ''reductio ad absurdum'' argument can take a range of forms, as these examples show: * The Earth cannot be flat; otherwise, since Earth assumed to be finite in extent, we would find people falling off the edge. * There is no smallest positive rational number because, if there were, then it could be divided by two to get a smaller one. The first example argues that denial of the premise would result in a ridiculous conclusion, against the evidence of our senses. The second example is a mathematical proof ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Direct Proof
In mathematics and logic, a direct proof is a way of showing the truth or falsehood of a given statement by a straightforward combination of established facts, usually axioms, existing lemmas and theorems, without making any further assumptions. Cupillari, Antonella. ''The Nuts and Bolts of Proofs''. Academic Press, 2001. Page 3. In order to directly prove a conditional statement of the form "If ''p'', then ''q''", it suffices to consider the situations in which the statement ''p'' is true. Logical deduction is employed to reason from assumptions to conclusion. The type of logic employed is almost invariably first-order logic, employing the quantifiers ''for all'' and ''there exists''. Common proof rules used are modus ponens and universal instantiation.C. Gupta, S. Singh, S. Kumar ''Advanced Discrete Structure''. I.K. International Publishing House Pvt. Ltd., 2010. Page 127. In contrast, an indirect proof may begin with certain hypothetical scenarios and then proceed to eliminate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Proof
A mathematical proof is an Inference, inferential Argument-deduction-proof distinctions, argument for a Proposition, mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proof can, in principle, be constructed using only certain basic or original assumptions known as axioms, along with the accepted rules of inference. Proofs are examples of exhaustive deductive reasoning which establish logical certainty, to be distinguished from empirical evidence, empirical arguments or non-exhaustive inductive reasoning which establish "reasonable expectation". Presenting many cases in which the statement holds is not enough for a proof, which must demonstrate that the statement is true in ''all'' possible cases. A proposition that has not been proved but is believed to be true is known as a conjecture, or a hypothesis if frequently used as an assumption for furthe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]