HOME





List Of Mathematical Constants
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. For example, the constant π may be defined as the ratio of the length of a circle's circumference to its diameter. The following list includes a decimal expansion and set containing each number, ordered by year of discovery. The column headings may be clicked to sort the table alphabetically, by decimal value, or by set. Explanations of the symbols in the right hand column can be found by clicking on them. List {, class="wikitable sortable sticky-header sort-under" , - ! rowspan="2" , Name ! rowspan="2" , Symbol ! rowspan="2" , Decimal expansion ! rowspan="2" , Formula ! rowspan="2" , Year ! colspan="3" , Set , - ! \mathbb{Q} ! \mathbb{A} ! \mathcal{P} , - , One , 1 , 1 , Multiplicative identity of \mathbb{C}. , data-sort-value= ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Constant
A mathematical constant is a number whose value is fixed by an unambiguous definition, often referred to by a special symbol (e.g., an Letter (alphabet), alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. Constants arise in many areas of mathematics, with constants such as and pi, occurring in such diverse contexts as geometry, number theory, statistics, and calculus. Some constants arise naturally by a fundamental principle or intrinsic property, such as the ratio between the circumference and diameter of a circle (). Other constants are notable more for historical reasons than for their mathematical properties. The more popular constants have been studied throughout the ages and computed to many decimal places. All named mathematical constants are Definable real number, definable numbers, and usually are also computable numbers (Chaitin's constant being a significant exception). Basic mathematical constants These a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Golden Ratio
In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their summation, sum to the larger of the two quantities. Expressed algebraically, for quantities and with , is in a golden ratio to if \frac = \frac = \varphi, where the Greek letter Phi (letter), phi ( or ) denotes the golden ratio. The constant satisfies the quadratic equation and is an irrational number with a value of The golden ratio was called the extreme and mean ratio by Euclid, and the divine proportion by Luca Pacioli; it also goes by other names. Mathematicians have studied the golden ratio's properties since antiquity. It is the ratio of a regular pentagon's diagonal to its side and thus appears in the Straightedge and compass construction, construction of the dodecahedron and icosahedron. A golden rectangle—that is, a rectangle with an aspect ratio of —may be cut into a square and a smaller rectangle with the same aspect ratio. The golden ratio has bee ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kepler–Bouwkamp Constant
In plane geometry, the Kepler–Bouwkamp constant (or polygon inscribing constant) is obtained as a limit of the following sequence. Take a circle of radius 1. Inscribe a regular triangle in this circle. Inscribe a circle in this triangle. Inscribe a square in it. Inscribe a circle, regular pentagon, circle, regular hexagon and so forth. The radius of the limiting circle is called the Kepler–Bouwkamp constant. It is named after Johannes Kepler and , and is the inverse of the polygon circumscribing constant. Numerical value The decimal expansion of the Kepler–Bouwkamp constant is : \prod_^\infty \cos\left(\frac\pi k\right) = 0.1149420448\dots. : The natural logarithm of the Kepler-Bouwkamp constant is given by : -2\sum_^\infty\frac\zeta(2k)\left(\zeta(2k)-1-\frac\right) where \zeta(s) = \sum_^ \frac is the Riemann zeta function The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter (zeta), is a mathematical function of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Connective Constant
In mathematics, the connective constant is a numerical quantity associated with self-avoiding walks on a lattice. It is studied in connection with the notion of universality in two-dimensional statistical physics models. While the connective constant depends on the choice of lattice so itself is not universal (similarly to other lattice-dependent quantities such as the critical probability threshold for percolation), it is nonetheless an important quantity that appears in conjectures for universal laws. Furthermore, the mathematical techniques used to understand the connective constant, for example in the recent rigorous proof by Duminil-Copin and Smirnov that the connective constant of the hexagonal lattice has the precise value \sqrt, may provide clues to a possible approach for attacking other important open problems in the study of self-avoiding walks, notably the conjecture that self-avoiding walks converge in the scaling limit to the Schramm–Loewner evolution. Defini ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Imaginary Unit
The imaginary unit or unit imaginary number () is a mathematical constant that is a solution to the quadratic equation Although there is no real number with this property, can be used to extend the real numbers to what are called complex numbers, using addition and multiplication. A simple example of the use of in a complex number is Imaginary numbers are an important mathematical concept; they extend the real number system \mathbb to the complex number system \mathbb, in which at least one Root of a function, root for every nonconstant polynomial exists (see Algebraic closure and Fundamental theorem of algebra). Here, the term ''imaginary'' is used because there is no real number having a negative square (algebra), square. There are two complex square roots of and , just as there are two complex square roots of every real number other than zero (which has one multiple root, double square root). In contexts in which use of the letter is ambiguous or problematic, the le ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Supergolden Ratio
In mathematics, the supergolden ratio is a geometrical aspect ratio, proportion, given by the unique real polynomial root, solution of the equation Its decimal expansion begins with . The name ''supergolden ratio'' is by analogy with the golden ratio, the positive solution of the equation Definition Three quantities are in the supergolden ratio if \frac =\frac =\frac The ratio is commonly denoted Substituting b=\psi c \, and a=\psi b =\psi^2 c \, in the middle fraction, \psi =\frac. It follows that the supergolden ratio is the unique real solution of the cubic equation \psi^3 -\psi^2 -1 =0. The Minimal polynomial (field theory), minimal polynomial for the reciprocal root is the depressed cubic x^ +x -1, thus the simplest solution with Cubic equation#Cardano's formula, Cardano's formula, \begin w_ &=\left( 1 \pm \frac \sqrt \right) /2 \\ 1 /\psi &=\sqrt[3] +\sqrt[3] \end or, using the Cubic equation#Trigonometric and hyperbolic solutions, hyperbolic sine, : 1 /\p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Twelfth Root Of 2
The twelfth root of two or \sqrt 2/math> (or equivalently 2^) is an algebraic irrational number, approximately equal to 1.0594631. It is most important in Western music theory, where it represents the frequency ratio (musical interval) of a semitone () in twelve-tone equal temperament. This number was proposed for the first time in relationship to musical tuning in the sixteenth and seventeenth centuries. It allows measurement and comparison of different intervals (frequency ratios) as consisting of different numbers of a single interval, the equal tempered semitone (for example, a minor third is 3 semitones, a major third is 4 semitones, and perfect fifth is 7 semitones). A semitone itself is divided into 100 cents (1 cent = \sqrt 2002^). Numerical value The twelfth root of two to 20 significant figures is . Fraction approximations in increasing order of accuracy include , , , , and . The equal-tempered chromatic scale A musical interval is a ratio of frequencies and the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cube Root
In mathematics, a cube root of a number is a number that has the given number as its third power; that is y^3=x. The number of cube roots of a number depends on the number system that is considered. Every real number has exactly one real cube root that is denoted \sqrt /math> and called the ''real cube root'' of or simply ''the cube root'' of in contexts where complex numbers are not considered. For example, the real cube roots of and are respectively and . The real cube root of an integer or of a rational number is generally not a rational number, neither a constructible number. Every nonzero real or complex number has exactly three cube roots that are complex numbers. If the number is real, one of the cube roots is real and the two other are nonreal complex conjugate numbers. Otherwise, the three cube roots are all nonreal. For example, the real cube root of is and the other cube roots of are -1+i\sqrt 3 and -1-i\sqrt 3. The three cube roots of are 3i, \tfrac-\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Doubling The Cube
Doubling the cube, also known as the Delian problem, is an ancient geometry, geometric problem. Given the Edge (geometry), edge of a cube, the problem requires the construction of the edge of a second cube whose volume is double that of the first. As with the related problems of squaring the circle and trisecting the angle, doubling the cube is now known to be impossible to construct by using only a compass and straightedge, but even in ancient times solutions were known that employed other methods. According to Eutocius, Archytas was the first to solve the problem of doubling the cube (the so-called Delian problem) with an ingenious geometric construction. The nonexistence of a compass-and-straightedge solution was finally proven by Pierre Wantzel in 1837. In algebraic terms, doubling a unit cube requires the construction of a line segment of length , where ; in other words, , the cube root of two. This is because a cube of side length 1 has a volume of , and a cube of twice tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cube Root Of 2
Doubling the cube, also known as the Delian problem, is an ancient geometric problem. Given the edge of a cube, the problem requires the construction of the edge of a second cube whose volume is double that of the first. As with the related problems of squaring the circle and trisecting the angle, doubling the cube is now known to be impossible to construct by using only a compass and straightedge, but even in ancient times solutions were known that employed other methods. According to Eutocius, Archytas was the first to solve the problem of doubling the cube (the so-called Delian problem) with an ingenious geometric construction. The nonexistence of a compass-and-straightedge solution was finally proven by Pierre Wantzel in 1837. In algebraic terms, doubling a unit cube requires the construction of a line segment of length , where ; in other words, , the cube root of two. This is because a cube of side length 1 has a volume of , and a cube of twice that volume (a volume of 2) h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




−1
In mathematics, −1 (negative one or minus one) is the additive inverse of 1, that is, the number that when added to 1 gives the additive identity element, 0. It is the negative integer greater than negative two (−2) and less than  0. In mathematics Algebraic properties Multiplying a number by −1 is equivalent to changing the sign of the number – that is, for any we have . This can be proved using the distributive law and the axiom that 1 is the multiplicative identity: :. Here we have used the fact that any number times 0 equals 0, which follows by cancellation from the equation :. In other words, :, so is the additive inverse of , i.e. , as was to be shown. The square of −1 (that is −1 multiplied by −1) equals 1. As a consequence, a product of two negative numbers is positive. For an algebraic proof of this result, start with the equation :. The first equality follows from the above result, and the second follows from the definition of −1 as addi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]