List Of Factorial And Binomial Topics
{{Short description, none This is a list of factorial and binomial topics in mathematics. See also binomial (other). * Abel's binomial theorem *Alternating factorial *Antichain *Beta function * Bhargava factorial *Binomial coefficient **Pascal's triangle *Binomial distribution *Binomial proportion confidence interval * Binomial-QMF ( Daubechies wavelet filters) *Binomial series *Binomial theorem *Binomial transform *Binomial type * Carlson's theorem *Catalan number ** Fuss–Catalan number *Central binomial coefficient *Combination *Combinatorial number system *De Polignac's formula *Difference operator * Difference polynomials *Digamma function * Egorychev method * Erdős–Ko–Rado theorem *Euler–Mascheroni constant *Faà di Bruno's formula *Factorial * Factorial moment *Factorial number system *Factorial prime * Factoriangular number *Gamma distribution *Gamma function *Gaussian binomial coefficient * Gould's sequence * Hyperfactorial *Hypergeometric distribution * Hy ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Carlson's Theorem
In mathematics, in the area of complex analysis, Carlson's theorem is a uniqueness theorem which was discovered by Fritz David Carlson. Informally, it states that two different analytic functions which do not grow very fast at infinity can not coincide at the integers. The theorem may be obtained from the Phragmén–Lindelöf theorem, which is itself an extension of the maximum-modulus theorem. Carlson's theorem is typically invoked to defend the uniqueness of a Newton series expansion. Carlson's theorem has generalized analogues for other expansions. Statement Assume that satisfies the following three conditions. The first two conditions bound the growth of at infinity, whereas the third one states that vanishes on the non-negative integers. # is an entire function of exponential type, meaning that , f(z), \leq C e^, \quad z \in \mathbb for some real values , . # There exists such that , f(iy), \leq C e^, \quad y \in \mathbb # for every non-negative integer . Th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Faà Di Bruno's Formula
Faà di Bruno's formula is an identity in mathematics generalizing the chain rule to higher derivatives. It is named after , although he was not the first to state or prove the formula. In 1800, more than 50 years before Faà di Bruno, the French mathematician Louis François Antoine Arbogast had stated the formula in a calculus textbook, which is considered to be the first published reference on the subject. Perhaps the most well-known form of Faà di Bruno's formula says that f(g(x))=\sum \frac\cdot f^(g(x))\cdot \prod_^n\left(g^(x)\right)^, where the sum is over all n-tuples of nonnegative integers (m_1,\ldots,m_n) satisfying the constraint 1\cdot m_1+2\cdot m_2+3\cdot m_3+\cdots+n\cdot m_n=n. Sometimes, to give it a memorable pattern, it is written in a way in which the coefficients that have the combinatorial interpretation discussed below are less explicit: : f(g(x)) =\sum \frac\cdot f^(g(x))\cdot \prod_^n\left(\frac\right)^. Combining the terms with the same value of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Euler–Mascheroni Constant
Euler's constant (sometimes called the Euler–Mascheroni constant) is a mathematical constant, usually denoted by the lowercase Greek letter gamma (), defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by : \begin \gamma &= \lim_\left(-\log n + \sum_^n \frac1\right)\\ px&=\int_1^\infty\left(-\frac1x+\frac1\right)\,\mathrm dx. \end Here, represents the floor function. The numerical value of Euler's constant, to 50 decimal places, is: History The constant first appeared in a 1734 paper by the Swiss mathematician Leonhard Euler, titled ''De Progressionibus harmonicis observationes'' (Eneström Index 43), where he described it as "worthy of serious consideration". Euler initially calculated the constant's value to 6 decimal places. In 1781, he calculated it to 16 decimal places. Euler used the notations and for the constant. The Italian mathematician Lorenzo Mascheroni attempted to calculate the constant to 32 dec ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Erdős–Ko–Rado Theorem
In mathematics, the Erdős–Ko–Rado theorem limits the number of Set (mathematics), sets in a family of sets for which every two sets have at least one element in common. Paul Erdős, Chao Ko, and Richard Rado proved the theorem in 1938, but did not publish it until 1961. It is part of the field of combinatorics, and one of the central results of The theorem applies to families of sets that all have the same and are all subsets of some larger set of size One way to construct a family of sets with these parameters, each two sharing an element, is to choose a single element to belong to all the subsets, and then form all of the subsets that contain the chosen element. The Erdős–Ko–Rado theorem states that when n is large enough for the problem to be nontrivial this construction produces the largest possible intersecting families. When n=2r there are other equally-large families, but for larger values of n only the families constructed in this way can be largest. The Erd ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Egorychev Method
The Egorychev method is a collection of techniques introduced by Georgy Egorychev for finding identities among sums of binomial coefficients, Stirling numbers, Bernoulli numbers, Harmonic numbers, Catalan numbers and other combinatorial numbers. The method relies on two observations. First, many identities can be proved by extracting coefficients of generating functions. Second, many generating functions are convergent power series, and coefficient extraction can be done using the Cauchy residue theorem (usually this is done by integrating over a small circular contour enclosing the origin). The sought-for identity can now be found using manipulations of integrals. Some of these manipulations are not clear from the generating function perspective. For instance, the integrand is usually a rational function, and the sum of the residues of a rational function is zero, yielding a new expression for the original sum. The residue at infinity is particularly important in these con ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Digamma Function
In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function: :\psi(z) = \frac\ln\Gamma(z) = \frac. It is the first of the polygamma functions. This function is Monotonic function, strictly increasing and Concave function, strictly concave on (0,\infty), and it Asymptotic analysis, asymptotically behaves as :\psi(z) \sim \ln - \frac, for complex numbers with large modulus (, z, \rightarrow\infty) in the Circular sector, sector , \arg z, 0. The digamma function is often denoted as \psi_0(x), \psi^(x) or (the uppercase form of the archaic Greek consonant digamma meaning Gamma, double-gamma). Gamma. Relation to harmonic numbers The gamma function obeys the equation :\Gamma(z+1)=z\Gamma(z). \, Taking the logarithm on both sides and using the functional equation property of the log-gamma function gives: :\log \Gamma(z+1)=\log(z)+\log \Gamma(z), Differentiating both sides with respect to gives: :\psi(z+1)=\psi(z)+\frac Since the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Difference Polynomials
In mathematics, in the area of complex analysis, the general difference polynomials are a polynomial sequence, a certain subclass of the Sheffer polynomials, which include the Newton polynomials, Selberg's polynomials, and the Stirling interpolation polynomials as special cases. Definition The general difference polynomial sequence is given by :p_n(z)=\frac where is the binomial coefficient. For \beta=0, the generated polynomials p_n(z) are the Newton polynomials :p_n(z)= = \frac. The case of \beta=1 generates Selberg's polynomials, and the case of \beta=-1/2 generates Stirling's interpolation polynomials. Moving differences Given an analytic function f(z), define the moving difference of ''f'' as :\mathcal_n(f) = \Delta^n f (\beta n) where \Delta is the forward difference operator. Then, provided that ''f'' obeys certain summability conditions, then it may be represented in terms of these polynomials as :f(z)=\sum_^\infty p_n(z) \mathcal_n(f). The conditions for summab ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Difference Operator
In mathematics, a recurrence relation is an equation according to which the nth term of a sequence of numbers is equal to some combination of the previous terms. Often, only k previous terms of the sequence appear in the equation, for a parameter k that is independent of n; this number k is called the ''order'' of the relation. If the values of the first k numbers in the sequence have been given, the rest of the sequence can be calculated by repeatedly applying the equation. In ''linear recurrences'', the th term is equated to a linear function of the k previous terms. A famous example is the recurrence for the Fibonacci numbers, F_n=F_+F_ where the order k is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients, because the coefficients of the linear function (1 and 1) are constants that do not depend on n. For these recurrences, one can express the general term of the sequence as a closed-form expression of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
De Polignac's Formula
In mathematics, Legendre's formula gives an expression for the exponent of the largest power of a prime ''p'' that divides the factorial ''n''!. It is named after Adrien-Marie Legendre. It is also sometimes known as de Polignac's formula, after Alphonse de Polignac. Statement For any prime number ''p'' and any positive integer ''n'', let \nu_p(n) be the exponent of the largest power of ''p'' that divides ''n'' (that is, the ''p''-adic valuation of ''n''). Then :\nu_p(n!) = \sum_^ \left\lfloor \frac \right\rfloor, where \lfloor x \rfloor is the floor function. While the sum on the right side is an infinite sum, for any particular values of ''n'' and ''p'' it has only finitely many nonzero terms: for every ''i'' large enough that p^i > n, one has \textstyle \left\lfloor \frac \right\rfloor = 0. This reduces the infinite sum above to :\nu_p(n!) = \sum_^ \left\lfloor \frac \right\rfloor \, , where L = \lfloor \log_ n \rfloor. Example For ''n'' = 6, one has 6! = 720 = ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Combinatorial Number System
In mathematics, and in particular in combinatorics, the combinatorial number system of degree ''k'' (for some positive integer ''k''), also referred to as combinadics, or the Macaulay representation of an integer, is a correspondence between natural numbers (taken to include 0) ''N'' and ''k''- combinations. The combinations are represented as strictly decreasing sequences ''c''''k'' > ... > ''c''2 > ''c''1 ≥ 0 where each ''ci'' corresponds to the index of a chosen element in a given ''k''-combination. Distinct numbers correspond to distinct ''k''-combinations, and produce them in lexicographic order. The numbers less than \tbinom nk correspond to all of . The correspondence does not depend on the size ''n'' of the set that the ''k''-combinations are taken from, so it can be interpreted as a map from N to the ''k''-combinations taken from N; in this view the correspondence is a bijection. The number ''N'' corresponding ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Combination
In mathematics, a combination is a selection of items from a set that has distinct members, such that the order of selection does not matter (unlike permutations). For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange. More formally, a ''k''-combination of a set ''S'' is a subset of ''k'' distinct elements of ''S''. So, two combinations are identical if and only if each combination has the same members. (The arrangement of the members in each set does not matter.) If the set has ''n'' elements, the number of ''k''-combinations, denoted by C(n,k) or C^n_k, is equal to the binomial coefficient \binom nk = \frac, which can be written using factorials as \textstyle\frac whenever k\leq n, and which is zero when k>n. This formula can be derived from the fact that each ''k''-combination of a set ''S'' of ''n'' members has k! permu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |