List Of AMD Sempron Processors
The Sempron is a name used for AMD's low-end CPUs, replacing the Duron processor. The name was introduced in 2004, and processors with this name continued to be available for the FM2/FM2+ socket in 2015. Desktop processors Sempron "Thoroughbred-B" (Socket A, 130 nm, Model 8) * All models support: ''MMX (instruction set), MMX, Streaming SIMD Extensions, SSE, 3DNow!, Enhanced 3DNow!'' "Thorton" (Socket A, 130 nm, Model 10) * All models support: ''MMX (instruction set), MMX, Streaming SIMD Extensions, SSE, 3DNow!, Enhanced 3DNow!'' "Barton" (Socket A, 130 nm, Model 10) * All models support: ''MMX (instruction set), MMX, Extended MMX, Streaming SIMD Extensions, SSE, 3DNow!, 3DNow!, Enhanced 3DNow!'' "Paris" (Socket 754, CG, 130 nm) * All models support: ''MMX (instruction set), MMX, Streaming SIMD Extensions, SSE, SSE2, 3DNow!, Enhanced 3DNow!, NX bit'' "Palermo" (Socket 754, D0, E3 & E6, 90 nm) * All models support: ''MMX (instruction set), MMX, Streaming SIMD Extensions, SSE, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sempron
Sempron has been the marketing name used by AMD for several different budget desktop CPUs, using several different technologies and CPU socket formats. The Sempron replaced the AMD Duron processor and competed against Intel's Celeron#Celeron D (Prescott-256), Celeron series of processors. AMD coined the name from the Latin ''wikt:semper, semper'', which means "always", to suggest the Sempron is suitable for "daily use, practical, and part of everyday life". The last Semprons were launched in April 2014. The brand was retired with the launch of the AMD Accelerated Processing Unit, AMD A-Series APUs. History and features The first Sempron CPUs were based on the Athlon#Athlon XP/MP, Athlon XP architecture using the ''Thoroughbred'' or ''Thorton'' core. These models were equipped with the Socket A interface, 256 KiB L2 cache and 166 MHz Front side bus (FSB 333). Thoroughbred cores natively had 256 KiB L2 cache, but Thortons had 512 KiB L2 cache, half of which was disa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cool'n'Quiet
AMD Cool'n'Quiet is a CPU dynamic frequency scaling and power saving technology introduced by AMD with its Athlon XP processor line. It works by reducing the processor's clock rate and voltage when the processor is idle. The aim of this technology is to reduce overall power consumption and lower heat generation, allowing for slower (thus quieter) cooling fan operation. The objectives of cooler and quieter result in the name Cool'n'Quiet. The technology is similar to Intel's SpeedStep and AMD's own PowerNow!, which were developed with the aim of increasing laptop battery life by reducing power consumption. Due to their different usage, ''Cool'n'Quiet'' refers to desktop and server chips, while ''PowerNow!'' is used for mobile chips; the technologies are similar but not identical. This technology was also introduced on "e-stepping" Opterons, however it is called ''Optimized Power Management'', which is essentially a re-tooled Cool'n'Quiet scheme designed to work with reg ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
XOP Instruction Set
The XOP (''eXtended Operations'') instruction set, announced by AMD on May 1, 2009, is an extension to the 128-bit SSE core instructions in the x86 and AMD64 instruction set for the Bulldozer processor core, which was released on October 12, 2011. However AMD removed support for XOP from Zen (microarchitecture) onward. The XOP instruction set contains several different types of vector instructions since it was originally intended as a major upgrade to SSE. Most of the instructions are integer instructions, but it also contains floating point permutation and floating point fraction extraction instructions. See the index for a list of instruction types. History XOP is a revised subset of what was originally intended as SSE5. It was changed to be similar but not overlapping with AVX, parts that overlapped with AVX were removed or moved to separate standards such as FMA4 (floating-point vector multiply–accumulate) and CVT16 ( Half-precision floating-point conversion imp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Advanced Vector Extensions
Advanced Vector Extensions (AVX, also known as Gesher New Instructions and then Sandy Bridge New Instructions) are SIMD extensions to the x86 instruction set architecture for microprocessors from Intel and Advanced Micro Devices (AMD). They were proposed by Intel in March 2008 and first supported by Intel with the Sandy Bridge microarchitecture shipping in Q1 2011 and later by AMD with the Bulldozer microarchitecture shipping in Q4 2011. AVX provides new features, new instructions, and a new coding scheme. AVX2 (also known as Haswell New Instructions) expands most integer commands to 256 bits and introduces new instructions. They were first supported by Intel with the Haswell microarchitecture, which shipped in 2013. AVX-512 expands AVX to 512-bit support using a new EVEX prefix encoding proposed by Intel in July 2013 and first supported by Intel with the Knights Landing co-processor, which shipped in 2016. In conventional processors, AVX-512 was introduced with Skylak ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
CLMUL Instruction Set
Carry-less Multiplication (CLMUL) is an extension to the x86 instruction set used by microprocessors from Intel and AMD which was proposed by Intel in March 2008 and made available in the Intel Westmere processors announced in early 2010. Mathematically, the instruction implements multiplication of polynomials over the finite field GF(2) where the bitstring a_0a_1\ldots a_ represents the polynomial a_0 + a_1X + a_2X^2 + \cdots + a_X^. The CLMUL instruction also allows a more efficient implementation of the closely related multiplication of larger finite fields GF(2''k'') than the traditional instruction set. One use of these instructions is to improve the speed of applications doing block cipher encryption in Galois/Counter Mode, which depends on finite field GF(2''k'') multiplication. Another application is the fast calculation of CRC values, including those used to implement the LZ77 sliding window DEFLATE algorithm in zlib and pngcrush. ARMv8 also has a version of CLMU ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
AES Instruction Set
An Advanced Encryption Standard instruction set (AES instruction set) is a set of instructions that are specifically designed to perform AES encryption and decryption operations efficiently. These instructions are typically found in modern processors and can greatly accelerate AES operations compared to software implementations. An AES instruction set includes instructions for key expansion, encryption, and decryption using various key sizes (128-bit, 192-bit, and 256-bit). The instruction set is often implemented as a set of instructions that can perform a single round of AES along with a special version for the last round which has a slightly different method. When AES is implemented as an instruction set instead of as software, it can have improved security, as its side channel attack surface is reduced. x86 architecture processors AES-NI (or the Intel Advanced Encryption Standard New Instructions; AES-NI) was the first major implementation. AES-NI is an extension to the x8 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
SSE4
SSE4 (Streaming SIMD Extensions 4) is a SIMD CPU instruction set used in the Intel Core microarchitecture and AMD K10 (K8L). It was announced on September 27, 2006, at the Fall 2006 Intel Developer Forum, with vague details in a white paper;Intel Streaming SIMD Extensions 4 (SSE4) Instruction Set Innovation , Intel. more precise details of 47 instructions became available at the Spring 2007 Intel Developer Forum in , in the presentation. SSE4 extended the SSE3 instruction set which was released in early 2004. All software using previous Intel SIMD instructio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
SSSE3
Supplemental Streaming SIMD Extensions 3 (SSSE3 or SSE3S) is a SIMD instruction set created by Intel and is the fourth iteration of the SSE technology. History SSSE3 was first introduced with Intel processors based on the Core microarchitecture on June 26, 2006 with the "Woodcrest" Xeons. SSSE3 has been referred to by the codenames Tejas New Instructions (TNI) or Merom New Instructions (MNI) for the first processor designs intended to support it. SSSE3 has enhanced for HD audio/video decoding/encoding, for example AAC. Functionality SSSE3 contains 16 new discrete instructions. Each instruction can act on 64-bit MMX or 128-bit XMM registers. Therefore, Intel's materials refer to 32 new instructions. They include: * Twelve instructions that perform horizontal addition or subtraction operations. * Six instructions that evaluate absolute values. * Two instructions that perform multiply-and-add operations and speed up the evaluation of dot products. * Two instructions tha ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Socket FM2
Socket FM2 is a CPU socket used by AMD's desktop ''Trinity'' and ''Richland'' APUs to connect to the motherboard as well as Athlon X2 and Athlon X4 processors based on them. FM2 was launched on September 27, 2012. Motherboards which feature the at the time new FM2 CPU socket also utilize AMD's at the time new A85X chipset. The socket is very similar to FM1, based on a 31 × 31 grid of pins with a 5 × 7 central void, three pins missing from each corner, and a few additional key pins missing. Compared to Socket FM1, two key pins were moved, and one more is removed, leaving 904 pins. For available chipsets consult Fusion controller hubs (FCH). Steamroller-based "Kaveri" APUs are ''not'' supported, see Socket FM2+ (FM2r2) and Socket FP3 (BGA-???). Heatsink The four holes for fastening the heatsink to the motherboard are placed in a rectangle with lateral lengths of 48 mm and 96 mm for AMD's sockets Socket AM2, Socket AM2+, Socket AM3, Socket AM3 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
AMD-V
x86 virtualization is the use of hardware-assisted virtualization capabilities on an x86/x86-64 CPU. In the late 1990s x86 virtualization was achieved by complex software techniques, necessary to compensate for the processor's lack of hardware-assisted virtualization capabilities while attaining reasonable performance. In 2005 and 2006, both Intel ( VT-x) and AMD ( AMD-V) introduced limited hardware virtualization support that allowed simpler virtualization software but offered very few speed benefits. Greater hardware support, which allowed substantial speed improvements, came with later processor models. Software-based virtualization The following discussion focuses only on virtualization of the x86 architecture protected mode. In protected mode the operating system kernel runs at a higher privilege such as ring 0, and applications at a lower privilege such as ring 3. In software-based virtualization, a host OS has direct access to hardware while the guest OSs have limite ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bit Manipulation Instruction Sets
Bit manipulation instructions sets (BMI sets) are extensions to the x86 instruction set architecture for microprocessors from Intel and AMD. The purpose of these instruction sets is to improve the speed of bit manipulation. All the instructions in these sets are non-SIMD and operate only on general-purpose registers. There are two sets published by Intel: BMI (now referred to as BMI1) and BMI2; they were both introduced with the Haswell microarchitecture with BMI1 matching features offered by AMD's ABM instruction set and BMI2 extending them. Another two sets were published by AMD: ABM (''Advanced Bit Manipulation'', which is also a subset of SSE4a implemented by Intel as part of SSE4.2 and BMI1), and TBM (''Trailing Bit Manipulation'', an extension introduced with Piledriver-based processors as an extension to BMI1, but dropped again in Zen-based processors). ABM (Advanced Bit Manipulation) AMD was the first to introduce the instructions that now form Intel's BMI1 as part ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
SSE4a
SSE4 (Streaming SIMD Extensions 4) is a SIMD CPU instruction set used in the Intel Core microarchitecture and AMD K10 (K8L). It was announced on September 27, 2006, at the Fall 2006 Intel Developer Forum, with vague details in a white paper;Intel Streaming SIMD Extensions 4 (SSE4) Instruction Set Innovation , Intel. more precise details of 47 instructions became available at the Spring 2007 Intel Developer Forum in , in the presentation. SSE4 extended the instruction set which was released in early 2004. All software using ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |