Laser Flash Analysis
The laser flash analysis or laser flash method is used to measure thermal diffusivity of a variety of different materials. An energy pulse heats one side of a plane-parallel sample and the resulting time dependent temperature rise on the backside due to the energy input is detected. The higher the thermal diffusivity of the sample, the faster the energy reaches the backside. A laser flash apparatus (LFA) to measure thermal diffusivity over a broad temperature range, is shown on the right hand side. In a one-dimensional, adiabatic case the thermal diffusivity a is calculated from this temperature rise as follows: : a = 0.1388 \cdot \frac Where * a is the thermal diffusivity in cm2/s * d is the thickness of the sample in cm * t_ is the time to the half maximum in s As the coefficient 0.1388 is dimensionless, the formula works also for a and d in their corresponding SI units. Measurement principle The laser flash method was developed by Parker et al. in 1961. In a vertical ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Thermal Diffusivity
In thermodynamics, thermal diffusivity is the thermal conductivity divided by density and specific heat capacity at constant pressure. It is a measure of the rate of heat transfer inside a material and has SI, SI units of m2/s. It is an intensive property. Thermal diffusivity is usually denoted by lowercase alpha (), but , , (kappa), , , D_T are also used. The formula is \alpha = \frac, where : is thermal conductivity (W/(m·K)), : is specific heat capacity (J/(kg·K)), : is density (kg/m3). Together, can be considered the volumetric heat capacity (J/(m3·K)). Thermal diffusivity is a positive coefficient in the heat equation: \frac = \alpha \nabla^2 T. One way to view thermal diffusivity is as the ratio of the time derivative of temperature to its Second derivative#Generalization to higher dimensions, curvature, quantifying the rate at which temperature concavity is "smoothed out". In a substance with high thermal diffusivity, heat moves rapidly through it because the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Thermal Conductivity
The thermal conductivity of a material is a measure of its ability to heat conduction, conduct heat. It is commonly denoted by k, \lambda, or \kappa and is measured in W·m−1·K−1. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal conductivity. For instance, metals typically have high thermal conductivity and are very efficient at conducting heat, while the opposite is true for insulating materials such as mineral wool or Styrofoam. Metals have this high thermal conductivity due to free electrons facilitating heat transfer. Correspondingly, materials of high thermal conductivity are widely used in heat sink applications, and materials of low thermal conductivity are used as thermal insulation. The reciprocal of thermal conductivity is called thermal resistivity. The defining equation for thermal conductivity is \mathbf = - k \nabla T, where \mathbf is the heat flux, k is the thermal conductivity, and \nabla ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Specific Heat
In thermodynamics, the specific heat capacity (symbol ) of a substance is the amount of heat that must be added to one unit of mass of the substance in order to cause an increase of one unit in temperature. It is also referred to as massic heat capacity or as the specific heat. More formally it is the heat capacity of a sample of the substance divided by the mass of the sample. The International System of Units, SI unit of specific heat capacity is joule per kelvin per kilogram, J⋅kg−1⋅K−1. For example, the heat required to raise the temperature of of water by is , so the specific heat capacity of water is . Specific heat capacity often varies with temperature, and is different for each state of matter. Liquid water has one of the highest specific heat capacities among common substances, about at 20 °C; but that of ice, just below 0 °C, is only . The specific heat capacities of iron, granite, and hydrogen gas are about 449 J⋅kg−1⋅K−1, 790  ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
YAG Laser
YAG, YaG, Yağ, or yag can refer to: * Yttrium aluminium garnet, a synthetic crystal used in solid-state laser systems * Fort Frances Municipal Airport, Ontario, Canada, IATA code * YMCA Youth and Government, a model government program for youth * Yahgan language, spoken in Chile and Argentina, ISO 639 code * Cansu Yağ (born 1990), a female Turkish footballer * YAG training vessels, wooden Canadian Navy boats 1954–1955 * List of yard and district craft of the United States Navy#District auxiliary, miscellaneous (YAG), District auxiliary, miscellaneous (YAG), US Navy hull classification symbol {{disambiguation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dirac Delta Function
In mathematical analysis, the Dirac delta function (or distribution), also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. Thus it can be Heuristic, represented heuristically as \delta (x) = \begin 0, & x \neq 0 \\ , & x = 0 \end such that \int_^ \delta(x) dx=1. Since there is no function having this property, modelling the delta "function" rigorously involves the use of limit (mathematics), limits or, as is common in mathematics, measure theory and the theory of distribution (mathematics), distributions. The delta function was introduced by physicist Paul Dirac, and has since been applied routinely in physics and engineering to model point masses and instantaneous impulses. It is called the delta function because it is a continuous analogue of the Kronecker delta function, which is usually defined on a discrete domain and takes values ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Thermal Conductivity
The thermal conductivity of a material is a measure of its ability to heat conduction, conduct heat. It is commonly denoted by k, \lambda, or \kappa and is measured in W·m−1·K−1. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal conductivity. For instance, metals typically have high thermal conductivity and are very efficient at conducting heat, while the opposite is true for insulating materials such as mineral wool or Styrofoam. Metals have this high thermal conductivity due to free electrons facilitating heat transfer. Correspondingly, materials of high thermal conductivity are widely used in heat sink applications, and materials of low thermal conductivity are used as thermal insulation. The reciprocal of thermal conductivity is called thermal resistivity. The defining equation for thermal conductivity is \mathbf = - k \nabla T, where \mathbf is the heat flux, k is the thermal conductivity, and \nabla ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Thermal Conductivity Measurement
There are a number of possible ways to measure thermal conductivity, each of them suitable for a limited range of materials, depending on the thermal properties and the medium temperature. Three classes of methods exist to measure the thermal conductivity of a sample: steady-state, time-domain, and frequency-domain methods. Steady-state methods In general, steady-state techniques perform a measurement when the temperature of the material measured does not change with time. This makes the signal analysis straightforward (steady state implies constant signals). The disadvantage is that a well-engineered experimental setup is usually needed. Steady-state methods, in general, work by applying a known heat flux, \dot Q (W/m^2), to a sample with a surface area, A(m^2) , and thickness, x (m); once the sample's steady-state temperature is reached, the difference in temperature, \Delta T, across the thickness of the sample is measured. After assuming one-dimensional heat flow and an isotrop ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Thermal Diffusivity
In thermodynamics, thermal diffusivity is the thermal conductivity divided by density and specific heat capacity at constant pressure. It is a measure of the rate of heat transfer inside a material and has SI, SI units of m2/s. It is an intensive property. Thermal diffusivity is usually denoted by lowercase alpha (), but , , (kappa), , , D_T are also used. The formula is \alpha = \frac, where : is thermal conductivity (W/(m·K)), : is specific heat capacity (J/(kg·K)), : is density (kg/m3). Together, can be considered the volumetric heat capacity (J/(m3·K)). Thermal diffusivity is a positive coefficient in the heat equation: \frac = \alpha \nabla^2 T. One way to view thermal diffusivity is as the ratio of the time derivative of temperature to its Second derivative#Generalization to higher dimensions, curvature, quantifying the rate at which temperature concavity is "smoothed out". In a substance with high thermal diffusivity, heat moves rapidly through it because the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Thermal Physics
Thermal physics is the combined study of thermodynamics, statistical mechanics, and kinetic theory of gases. This umbrella-subject is typically designed for physics students and functions to provide a general introduction to each of three core heat-related subjects. Other authors, however, define thermal physics loosely as a summation of only thermodynamics and statistical mechanics. Thermal physics can be seen as the study of systems with a large number of atoms. It unites thermodynamics and statistical mechanics. Overview Thermal physics, generally speaking, is the study of the statistical nature of physical systems from an energetic perspective. Starting with the basics of heat and temperature, thermal physics analyzes the first law of thermodynamics and second law of thermodynamics from the statistical perspective, in terms of the number of microstates corresponding to a given macrostate. In addition, the concept of entropy is studied via quantum theory. A central t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Materials Testing
Materials testing is used to assess product quality, functionality, safety, reliability and toxicity of both materials and electronic devices. Some applications of materials testing include defect detection, failure analysis, material development, basic materials science research, and the verification of material properties for application trials. This is a list of organizations and companies that publish materials testing standards or offer materials testing laboratory services. International organizations These organizations create materials testing standards or conduct active research in the fields of materials analysis and reliability testing. * American Association of Textile Chemists and Colorists (AATCC) * American National Standards Institute (ANSI) * American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) * American Society of Mechanical Engineers (ASME) * ASTM International * Federal Institute for Materials Research and Testing ''(Germa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |