König's Theorem (complex Analysis)
   HOME





König's Theorem (complex Analysis)
In complex analysis and numerical analysis, König's theorem, named after the Hungarian mathematician Gyula Kőnig, gives a way to estimate simple poles or simple roots of a function. In particular, it has numerous applications in root finding algorithms like Newton's method and its generalization Householder's method. Statement Given a meromorphic function In the mathematical field of complex analysis, a meromorphic function on an open subset ''D'' of the complex plane is a function that is holomorphic on all of ''D'' ''except'' for a set of isolated points, which are ''poles'' of the function. ... defined on , x, : :f(x) = \sum_^\infty c_nx^n, \qquad c_0\neq 0. which only has one simple pole x=r in this disk. Then :\frac = r + o(\sigma^), where 0<\sigma<1 such that , r, <\sigma R. In particular, we have :\lim_ \frac = r.


Intuition

Recall that :\frac=-\frac\ ...
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complex Analysis
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, and applied mathematics, as well as in physics, including the branches of hydrodynamics, thermodynamics, quantum mechanics, and twistor theory. By extension, use of complex analysis also has applications in engineering fields such as nuclear, aerospace, mechanical and electrical engineering. As a differentiable function of a complex variable is equal to the sum function given by its Taylor series (that is, it is analytic), complex analysis is particularly concerned with analytic functions of a complex variable, that is, '' holomorphic functions''. The concept can be extended to functions of several complex variables. Complex analysis is contrasted with real analysis, which dea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Numerical Analysis
Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic computation, symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods that attempt to find approximate solutions of problems rather than the exact ones. Numerical analysis finds application in all fields of engineering and the physical sciences, and in the 21st century also the life and social sciences like economics, medicine, business and even the arts. Current growth in computing power has enabled the use of more complex numerical analysis, providing detailed and realistic mathematical models in science and engineering. Examples of numerical analysis include: ordinary differential equations as found in celestial mechanics (predicting the motions of planets, stars and galaxies), numerical linear algebra in data analysis, and stochastic differential equations and Markov chains for simulati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gyula Kőnig
Gyula Kőnig (16 December 1849 – 8 April 1913) was a mathematician from Hungary. His mathematical publications in German appeared under the name Julius König. His son Dénes Kőnig was a graph theorist. Biography Gyula Kőnig was active literarily and mathematically. He studied medicine in Vienna and, from 1868 on, in Heidelberg. After having worked, instructed by Hermann von Helmholtz, on electrical stimulation of nerves, he switched to mathematics. He obtained his doctorate under the supervision of the mathematician Leo Königsberger. His thesis ''Zur Theorie der Modulargleichungen der elliptischen Functionen'' covers 24 pages. As a post-doc he completed his mathematical studies in Berlin attending lessons by Leopold Kronecker and Karl Weierstraß. He then returned to Budapest, where he was appointed as a ''dozent'' at the university in 1871. He became a professor at the Teacher's College in Budapest in 1873 and, in the following year, was appointed professor at the Techn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Root-finding Algorithm
In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function is a number such that . As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form, root-finding algorithms provide approximations to zeros. For functions from the real numbers to real numbers or from the complex numbers to the complex numbers, these are expressed either as floating-point numbers without error bounds or as floating-point values together with error bounds. The latter, approximations with error bounds, are equivalent to small isolating intervals for real roots or disks for complex roots. Solving an equation is the same as finding the roots of the function . Thus root-finding algorithms can be used to solve any equation of continuous functions. However, most root-finding algorithms do not guarantee that they will find all roots of a function, and if such an algorithm does not f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Newton's Method
In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function. The most basic version starts with a real-valued function , its derivative , and an initial guess for a root of . If satisfies certain assumptions and the initial guess is close, then x_ = x_0 - \frac is a better approximation of the root than . Geometrically, is the x-intercept of the tangent of the graph of at : that is, the improved guess, , is the unique root of the linear approximation of at the initial guess, . The process is repeated as x_ = x_n - \frac until a sufficiently precise value is reached. The number of correct digits roughly doubles with each step. This algorithm is first in the class of Householder's methods, and was succeeded by Halley's method. The method can also be extended t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Householder's Method
In mathematics, and more specifically in numerical analysis, Householder's methods are a class of root-finding algorithms that are used for functions of one real variable with continuous derivatives up to some order . Each of these methods is characterized by the number , which is known as the ''order'' of the method. The algorithm is iterative and has an order of convergence of . These methods are named after the American mathematician Alston Scott Householder. The case of corresponds to Newton's method; the case of corresponds to Halley's method. Method Householder's method is a numerical algorithm for solving the equation . In this case, the function has to be a function of one real variable. The method consists of a sequence of iterations x_ = x_n + d\; \frac beginning with an initial guess . If is a times continuously differentiable function and is a zero of but not of its derivative, then, in a neighborhood of , the iterates satisfy: , x_ - a , \le K \c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Meromorphic Function
In the mathematical field of complex analysis, a meromorphic function on an open subset ''D'' of the complex plane is a function that is holomorphic on all of ''D'' ''except'' for a set of isolated points, which are ''poles'' of the function. The term comes from the Greek ''meros'' ( μέρος), meaning "part". Every meromorphic function on ''D'' can be expressed as the ratio between two holomorphic functions (with the denominator not constant 0) defined on ''D'': any pole must coincide with a zero of the denominator. Heuristic description Intuitively, a meromorphic function is a ratio of two well-behaved (holomorphic) functions. Such a function will still be well-behaved, except possibly at the points where the denominator of the fraction is zero. If the denominator has a zero at ''z'' and the numerator does not, then the value of the function will approach infinity; if both parts have a zero at ''z'', then one must compare the multiplicity of these zeros. From an algeb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]