Kuiper's Theorem
In mathematics, Kuiper's theorem (after Nicolaas Kuiper) is a result on the topology of operators on an infinite-dimensional, complex Hilbert space ''H''. It states that the topological space, space GL(''H'') of invertible bounded operator, bounded linear operator, endomorphisms of ''H'' is such that all maps from any CW complex, finite complex ''Y'' to GL(''H'') are homotopic to a constant, for the norm topology on operators. A significant corollary, also referred to as ''Kuiper's theorem'', is that this group is weakly contractible, ''ie.'' all its homotopy groups are trivial. This result has important uses in topological K-theory. General topology of the general linear group For finite dimensional ''H'', this group would be a complex general linear group and not at all contractible. In fact it is homotopy equivalent to its maximal compact subgroup, the unitary group ''U'' of ''H''. The proof that the complex general linear group and unitary group have the same homotopy ty ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Andrey Nikolayevich Tychonoff
Andrey Nikolayevich Tikhonov (; 17 October 1906 – 7 October 1993) was a leading USSR, Soviet Russian mathematician and geophysicist known for important contributions to topology, functional analysis, mathematical physics, and ill-posed problems. He was also one of the inventors of the magnetotellurics method in geophysics. Other transliterations of his surname include "Tychonoff", "Tychonov", "Tihonov", "Tichonov". Biography Born in Gzhatsk, he studied at the Moscow State University where he received a Ph.D. in 1927 under the direction of Pavel Sergeevich Alexandrov. In 1933 he was appointed as a professor at Moscow State University. He became a corresponding member of the USSR Academy of Sciences on 29 January 1939 and a academician, full member of the USSR Academy of Sciences on 1 July 1966. Research work Tikhonov worked in a number of different fields in mathematics. He made important contributions to topology, functional analysis, mathematical physics, and certain c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Shizuo Kakutani
was a Japanese and American mathematician, best known for his eponymous fixed-point theorem. Biography Kakutani attended Tohoku University in Sendai, where his advisor was Tatsujirō Shimizu. At one point he spent two years at the Institute for Advanced Study in Princeton at the invitation of the mathematician Hermann Weyl. While there, he also met John von Neumann. Kakutani received his Ph.D. in 1941 from Osaka University and taught there through World War II. He returned to the Institute for Advanced Study in 1948, and was given a professorship by Yale in 1949, where he won a students' choice award for excellence in teaching. Kakutani received two awards of the Japan Academy, the Imperial Prize and the Academy Prize in 1982, for his scholarly achievements in general and his work on functional analysis in particular. He was a Plenary Speaker of the ICM in 1950 in Cambridge, Massachusetts. Kakutani was married to Keiko ("Kay") Uchida, who was a sister to author ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Homeomorphism
In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the category of topological spaces—that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same. Very roughly speaking, a topological space is a geometric object, and a homeomorphism results from a continuous deformation of the object into a new shape. Thus, a square and a circle are homeomorphic to each other, but a sphere and a torus are not. However, this description can be misleading. Some continuous deformations do not produce homeomorphisms, such as the deformation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
James Dugundji
James Dugundji (August 30, 1919 – January 8, 1985) was an American mathematician, a professor of mathematics at the University of Southern California.. See in particulap. 244for a brief biography of Dugundji.Note about the life and work of Dugundji by Andrzej Granas in their book ''Fixed Point Theory'', Springer, 2005. Reprinted in , p. 9. Dugundji's parents emigrated from to , where Dugundji was born in 1919. He studied at New Yo ...
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Brouwer Fixed-point Theorem
Brouwer's fixed-point theorem is a fixed-point theorem in topology, named after Luitzen Egbertus Jan Brouwer, L. E. J. (Bertus) Brouwer. It states that for any continuous function f mapping a nonempty compactness, compact convex set to itself, there is a point x_0 such that f(x_0)=x_0. The simplest forms of Brouwer's theorem are for continuous functions f from a closed interval I in the real numbers to itself or from a closed Disk (mathematics), disk D to itself. A more general form than the latter is for continuous functions from a nonempty convex compact subset K of Euclidean space to itself. Among hundreds of fixed-point theorems, Brouwer's is particularly well known, due in part to its use across numerous fields of mathematics. In its original field, this result is one of the key theorems characterizing the topology of Euclidean spaces, along with the Jordan curve theorem, the hairy ball theorem, the invariance of dimension and the Borsuk–Ulam theorem. This gives it a place ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Diffeomorphic
In mathematics, a diffeomorphism is an isomorphism of differentiable manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are continuously differentiable. Definition Given two differentiable manifolds M and N, a continuously differentiable map f \colon M \rightarrow N is a diffeomorphism if it is a bijection and its inverse f^ \colon N \rightarrow M is differentiable as well. If these functions are r times continuously differentiable, f is called a C^r-diffeomorphism. Two manifolds M and N are diffeomorphic (usually denoted M \simeq N) if there is a diffeomorphism f from M to N. Two C^r-differentiable manifolds are C^r-diffeomorphic if there is an r times continuously differentiable bijective map between them whose inverse is also r times continuously differentiable. Diffeomorphisms of subsets of manifolds Given a subset X of a manifold M and a subset Y of a manifold N, a function f:X ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
John Baez
John Carlos Baez ( ; born June 12, 1961) is an American mathematical physicist and a professor of mathematics at the University of California, Riverside (UCR) in Riverside, California. He has worked on spin foams in loop quantum gravity, applications of higher categories to physics, and applied category theory. Additionally, Baez is known on the World Wide Web as the author of the crackpot index. Education John C. Baez attended Princeton University where he graduated with an A.B. in mathematics in 1982; his senior thesis was titled "Recursivity in quantum mechanics", under the supervision of John P. Burgess. He earned his doctorate in 1986 from the Massachusetts Institute of Technology under the direction of Irving Segal. Career Baez was a post-doctoral researcher at Yale University. Since 1989, he has been a faculty member at UC Riverside. From 2010 to 2012, he was a visiting professor at the Centre for Quantum Technologies in Singapore and continued working th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Folklore
In common mathematical parlance, a mathematical result is called folklore if it is an unpublished result with no clear originator, but which is well-circulated and believed to be true among the specialists. More specifically, folk mathematics, or mathematical folklore, is the body of theorems, definitions, proofs, facts or techniques that circulate among mathematicians by word of mouth, but have not yet appeared in print, either in books or in scholarly journals. Quite important at times for researchers are folk theorems, which are results known, at least to experts in a field, and are considered to have established status, though not published in complete form. Sometimes, these are only alluded to in the public literature. An example is a book of exercises, described on the back cover: Another distinct category is well-knowable mathematics, a term introduced by John Conway. These mathematical matters are known and factual, but not in active circulation in relation with curren ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Contractible Space
In mathematics, a topological space ''X'' is contractible if the identity map on ''X'' is null-homotopic, i.e. if it is homotopic to some constant map. Intuitively, a contractible space is one that can be continuously shrunk to a point within that space. Properties A contractible space is precisely one with the homotopy type of a point. It follows that all the homotopy groups of a contractible space are trivial. Therefore any space with a nontrivial homotopy group cannot be contractible. Similarly, since singular homology is a homotopy invariant, the reduced homology groups of a contractible space are all trivial. For a nonempty topological space ''X'' the following are all equivalent: *''X'' is contractible (i.e. the identity map is null-homotopic). *''X'' is homotopy equivalent to a one-point space. *''X'' deformation retracts onto a point. (However, there exist contractible spaces which do not ''strongly'' deformation retract to a point.) *For any path-connected space ' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Unit Sphere
In mathematics, a unit sphere is a sphere of unit radius: the locus (mathematics), set of points at Euclidean distance 1 from some center (geometry), center point in three-dimensional space. More generally, the ''unit -sphere'' is an n-sphere, -sphere of unit radius in -dimensional Euclidean space; the unit circle is a special case, the unit -sphere in the Euclidean plane, plane. An (Open set, open) unit ball is the region inside of a unit sphere, the set of points of distance less than 1 from the center. A sphere or ball with unit radius and center at the origin (mathematics), origin of the space is called ''the'' unit sphere or ''the'' unit ball. Any arbitrary sphere can be transformed to the unit sphere by a combination of translation (geometry), translation and scaling (geometry), scaling, so the study of spheres in general can often be reduced to the study of the unit sphere. The unit sphere is often used as a model for spherical geometry because it has constant sectional cu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |