HOME





Kinodynamic Planning
In robotics and motion planning, kinodynamic planning is a class of problems for which velocity, acceleration, and force/torque bounds must be satisfied, together with kinematic constraints such as avoiding obstacles. The term was coined by Bruce Donald, Pat Xavier, John Canny, and John Reif. Donald et al. developed the first polynomial-time approximation schemes (PTAS) for the problem. By providing a provably polynomial-time ε-approximation algorithm, they resolved a long-standing open problem in optimal control. Their first paper considered time-optimal control ("fastest path") of a point mass under Newtonian dynamics, amidst polygonal (2D) or polyhedral (3D) obstacles, subject to state bounds on position, velocity, and acceleration. Later they extended the technique to many other cases, for example, to 3D open-chain kinematic robots under full Lagrangian dynamics. More recently, many practical heuristic algorithms based on stochastic optimization and iterative sampling w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Robotics
Robotics is the interdisciplinary study and practice of the design, construction, operation, and use of robots. Within mechanical engineering, robotics is the design and construction of the physical structures of robots, while in computer science, robotics focuses on robotic automation algorithms. Other disciplines contributing to robotics include electrical engineering, electrical, control engineering, control, software engineering, software, Information engineering (field), information, electronics, electronic, telecommunications engineering, telecommunication, computer engineering, computer, mechatronic, and materials engineering, materials engineering. The goal of most robotics is to design machines that can help and assist humans. Many robots are built to do jobs that are hazardous to people, such as finding survivors in unstable ruins, and exploring space, mines and shipwrecks. Others replace people in jobs that are boring, repetitive, or unpleasant, such as cleaning, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Motion Planning
Motion planning, also path planning (also known as the navigation problem or the piano mover's problem) is a computational problem to find a sequence of valid configurations that moves the object from the source to destination. The term is used in computational geometry, computer animation, robotics and computer games. For example, consider navigating a mobile robot inside a building to a distant waypoint. It should execute this task while avoiding walls and not falling down stairs. A motion planning algorithm would take a description of these tasks as input, and produce the speed and turning commands sent to the robot's wheels. Motion planning algorithms might address robots with a larger number of joints (e.g., industrial manipulators), more complex tasks (e.g. manipulation of objects), different constraints (e.g., a car that can only drive forward), and uncertainty (e.g. imperfect models of the environment or robot). Motion planning has several robotics applications, such ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Velocity
Velocity is a measurement of speed in a certain direction of motion. It is a fundamental concept in kinematics, the branch of classical mechanics that describes the motion of physical objects. Velocity is a vector (geometry), vector Physical quantity, quantity, meaning that both magnitude and direction are needed to define it. The Scalar (physics), scalar absolute value (Magnitude (mathematics), magnitude) of velocity is called , being a coherent derived unit whose quantity is measured in the International System of Units, SI (metric system) as metres per second (m/s or m⋅s−1). For example, "5 metres per second" is a scalar, whereas "5 metres per second east" is a vector. If there is a change in speed, direction or both, then the object is said to be undergoing an ''acceleration''. Definition Average velocity The average velocity of an object over a period of time is its Displacement (geometry), change in position, \Delta s, divided by the duration of the period, \Delt ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Acceleration
In mechanics, acceleration is the Rate (mathematics), rate of change of the velocity of an object with respect to time. Acceleration is one of several components of kinematics, the study of motion. Accelerations are Euclidean vector, vector quantities (in that they have Magnitude (mathematics), magnitude and Direction (geometry), direction). The orientation of an object's acceleration is given by the orientation of the ''net'' force acting on that object. The magnitude of an object's acceleration, as described by Newton's second law, is the combined effect of two causes: * the net balance of all external forces acting onto that object — magnitude is Direct proportionality, directly proportional to this net resulting force; * that object's mass, depending on the materials out of which it is made — magnitude is Inverse proportionality, inversely proportional to the object's mass. The International System of Units, SI unit for acceleration is metre per second squared (, \ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bruce Donald
Bruce Randall Donald (born 1958) is an American computer scientist and computational biologist. He is the James B. Duke Professor of Computer Science and Biochemistry at Duke University. He has made numerous contributions to several fields in Computer Science such as robotics, Microelectromechanical Systems (MEMS), Geometric & physical algorithms and computational geometry, as well as in areas of Structural Molecular Biology & Biochemistry such as Protein design, Protein Structure Determination and Computational Chemistry. Life and career Donald received a B.A. summa cum laude in Russian Language and Literature from Yale University in 1980. After working at the Laboratory for Computer Graphics and Spatial Analysis in the Graduate School of Design at Harvard University, he then attended MIT EECS, where he received his S.M. in EECS (1984) and Ph.D. in Computer Science (1987) under the supervision of professor Tomás Lozano-Pérez in the MIT AI Lab (Artificial Intelligence La ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polynomial-time Approximation Scheme
In computer science (particularly algorithmics), a polynomial-time approximation scheme (PTAS) is a type of approximation algorithm for optimization problems (most often, NP-hard optimization problems). A PTAS is an algorithm which takes an instance of an optimization problem and a parameter and produces a solution that is within a factor of being optimal (or for maximization problems). For example, for the Euclidean traveling salesman problem, a PTAS would produce a tour with length at most , with being the length of the shortest tour. Sanjeev Arora, Polynomial-time Approximation Schemes for Euclidean TSP and other Geometric Problems, Journal of the ACM 45(5) 753–782, 1998. The running time of a PTAS is required to be polynomial in the problem size for every fixed ε, but can be different for different ε. Thus an algorithm running in time or even counts as a PTAS. Variants Deterministic A practical problem with PTAS algorithms is that the exponent of the polynomial co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polynomial-time
In theoretical computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor. Since an algorithm's running time may vary among different inputs of the same size, one commonly considers the worst-case time complexity, which is the maximum amount of time required for inputs of a given size. Less common, and usually specified explicitly, is the average-case complexity, which is the average of the time taken on inputs of a given size (this makes sense because there are only a finite number of possible inputs of a given size). In both cases, the time complexity is gener ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Newtonian Dynamics
In physics, Newtonian dynamics (also known as Newtonian mechanics) is the study of the dynamics of a particle or a small body according to Newton's laws of motion. Mathematical generalizations Typically, the Newtonian dynamics occurs in a three-dimensional Euclidean space, which is flat. However, in mathematics Newton's laws of motion can be generalized to multidimensional and curved spaces. Often the term Newtonian dynamics is narrowed to Newton's second law \displaystyle m\,\mathbf a=\mathbf F. Newton's second law in a multidimensional space Consider \displaystyle N particles with masses \displaystyle m_1,\,\ldots,\,m_N in the regular three-dimensional Euclidean space. Let \displaystyle \mathbf r_1,\,\ldots,\,\mathbf r_N be their radius-vectors in some inertial coordinate system. Then the motion of these particles is governed by Newton's second law applied to each of them The three-dimensional radius-vectors \displaystyle\mathbf r_1,\,\ldots,\,\mathbf r_N can be built into ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lagrangian Dynamics
In physics, Lagrangian mechanics is a formulation of classical mechanics founded on the d'Alembert principle of virtual work. It was introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in his presentation to the Turin Academy of Science in 1760 culminating in his 1788 grand opus, ''Mécanique analytique''. Lagrangian mechanics describes a mechanical system as a pair consisting of a configuration space ''M'' and a smooth function L within that space called a ''Lagrangian''. For many systems, , where ''T'' and ''V'' are the kinetic and potential energy of the system, respectively. The stationary action principle requires that the action functional of the system derived from ''L'' must remain at a stationary point (specifically, a maximum, minimum, or saddle point) throughout the time evolution of the system. This constraint allows the calculation of the equations of motion of the system using Lagrange's equations. Introduction Newton's l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Heuristic Algorithm
A heuristic or heuristic technique (''problem solving'', '' mental shortcut'', ''rule of thumb'') is any approach to problem solving that employs a pragmatic method that is not fully optimized, perfected, or rationalized, but is nevertheless "good enough" as an approximation or attribute substitution. Where finding an optimal solution is impossible or impractical, heuristic methods can be used to speed up the process of finding a satisfactory solution. Heuristics can be mental shortcuts that ease the cognitive load of making a decision. Context Gigerenzer & Gaissmaier (2011) state that sub-sets of ''strategy'' include heuristics, regression analysis, and Bayesian inference. Heuristics are strategies based on rules to generate optimal decisions, like the anchoring effect and utility maximization problem. These strategies depend on using readily accessible, though loosely applicable, information to control problem solving in human beings, machines and abstract issu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Robot Control
Robotic control is the system that contributes to the movement of robots. This involves the mechanical aspects and programmable systems that makes it possible to control robots. Robotics can be controlled by various means including manual, wireless, semi-autonomous (a mix of fully automatic and wireless control), and fully autonomous (using artificial intelligence). Modern robots (2000-present) Medical and surgical In the medical field, robots are used to make precise movements that are difficult for humans. Robotic surgery involves the use of less-invasive surgical methods, which are “procedures performed through tiny incisions”. Robots use the Da Vinci Surgical System, da Vinci surgical method, which involves the robotic arm (which holds onto surgical instruments) and a camera. The surgeon sits on a console where he controls the robot wirelessly. The feed from the camera is projected on a monitor, allowing the surgeon to see the incisions. The system is built to mimic t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]