HOME





Khufu And Khafre
In cryptography, Khufu and Khafre are two block ciphers designed by Ralph Merkle in 1989 while working at Xerox's Palo Alto Research Center. Along with Snefru, a cryptographic hash function, the ciphers were named after the Egyptian Pharaohs Khufu, Khafre and Sneferu. Under a voluntary scheme, Xerox submitted Khufu and Khafre to the US National Security Agency (NSA) prior to publication. NSA requested that Xerox not publish the algorithms, citing concerns about national security. Xerox, a large contractor to the US government, complied. However, a reviewer of the paper passed a copy to John Gilmore, who made it available via the sci.crypt newsgroup. It would appear this was against Merkle's wishes. The scheme was subsequently published at the 1990 CRYPTO conference (Merkle, 1990). Khufu and Khafre were patented by Xerox; the patent was issued on March 26, 1991. Khufu Khufu is a 64-bit block cipher which, unusually, uses keys of size 512 bits; block ciphers typically have ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cryptography
Cryptography, or cryptology (from "hidden, secret"; and ''graphein'', "to write", or ''-logy, -logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of Adversary (cryptography), adversarial behavior. More generally, cryptography is about constructing and analyzing Communication protocol, protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others. Core concepts related to information security (confidentiality, data confidentiality, data integrity, authentication, and non-repudiation) are also central to cryptography. Practical applications of cryptography include electronic commerce, Smart card#EMV, chip-based payment cards, digital currencies, password, computer passwords, and military communications. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Differential Attack
Differential cryptanalysis is a general form of cryptanalysis applicable primarily to block ciphers, but also to stream ciphers and cryptographic hash functions. In the broadest sense, it is the study of how differences in information input can affect the resultant difference at the output. In the case of a block cipher, it refers to a set of techniques for tracing differences through the network of transformation, discovering where the cipher exhibits non-random behavior, and exploiting such properties to recover the secret key (cryptography key). History The discovery of differential cryptanalysis is generally attributed to Eli Biham and Adi Shamir in the late 1980s, who published a number of attacks against various block ciphers and hash functions, including a theoretical weakness in the Data Encryption Standard (DES). It was noted by Biham and Shamir that DES was surprisingly resistant to differential cryptanalysis, but small modifications to the algorithm would make it much m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nothing Up My Sleeve Number
In cryptography, nothing-up-my-sleeve numbers are any numbers which, by their construction, are above suspicion of hidden properties. They are used in creating cryptographic functions such as hashes and ciphers. These algorithms often need randomized constants for mixing or initialization purposes. The cryptographer may wish to pick these values in a way that demonstrates the constants were not selected for a nefarious purpose, for example, to create a backdoor to the algorithm. These fears can be allayed by using numbers created in a way that leaves little room for adjustment. An example would be the use of initial digits from the number as the constants. Using digits of millions of places after the decimal point would not be considered trustworthy because the algorithm designer might have selected that starting point because it created a secret weakness the designer could later exploit—though even with natural-seeming selections, enough entropy exists in the possible choic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


A Million Random Digits With 100,000 Normal Deviates
''A Million Random Digits with 100,000 Normal Deviates'' is a random number book by the RAND Corporation, originally published in 1955. The book, consisting primarily of a random number table, was an important 20th century work in the field of statistics and random numbers. Production and background It was produced starting in 1947 by an electronic simulation of a roulette wheel attached to a computer, the results of which were then carefully filtered and tested before being used to generate the table. The RAND table was an important breakthrough in delivering random numbers, because such a large and carefully prepared table had never before been available. In addition to being available in book form, one could also order the digits on a series of punched cards. The table is formatted as 400 pages, each containing 50 lines of 50 digits. Columns and lines are grouped in fives, and the lines are numbered 00000 through 19999. The standard normal deviates are another 200 pa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adi Shamir
Adi Shamir (; born July 6, 1952) is an Israeli cryptographer and inventor. He is a co-inventor of the Rivest–Shamir–Adleman (RSA) algorithm (along with Ron Rivest and Len Adleman), a co-inventor of the Feige–Fiat–Shamir identification scheme (along with Uriel Feige and Amos Fiat), one of the inventors of differential cryptanalysis and has made numerous contributions to the fields of cryptography and computer science. Biography Adi Shamir was born in Tel Aviv. He received a Bachelor of Science (BSc) degree in mathematics from Tel Aviv University in 1973 and obtained an MSc and PhD in computer science from the Weizmann Institute in 1975 and 1977 respectively. He spent a year as a postdoctoral researcher at the University of Warwick and did research at Massachusetts Institute of Technology (MIT) from 1977 to 1980. Scientific career In 1980, he returned to Israel, joining the faculty of Mathematics and Computer Science at the Weizmann Institute. Starting from 2006, he is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Eli Biham
Eli Biham () is an Israeli cryptographer and cryptanalyst who is a professor at the Technion - Israel Institute of Technology Computer Science department. From 2008 to 2013, Biham was the dean of the Technion Computer Science department, after serving for two years as chief of CS graduate school. Biham invented (publicly) differential cryptanalysis, for which he received his Ph.D., while working under Adi Shamir. Contributions to cryptanalysis * Differential cryptanalysis - publicly invented during his Ph.D. studies under Adi Shamir * Attacking all triple modes of operation. * Impossible differential cryptanalysis - joint work with Adi Shamir and Alex Biryukov * Breaking (together with Lars Knudsen) the ANSI X9.52 CBCM mode (few days before the final standardization) * Breaking the GSM security mechanisms (with Elad Barkan and Nathan Keller) * Co-invention of related-key attacks. * Differential Fault Analysis - joint work with Adi Shamir * Conditional Linear Cryptanal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bruce Schneier
Bruce Schneier (; born January 15, 1963) is an American cryptographer, computer security professional, privacy specialist, and writer. Schneier is an Adjunct Lecturer in Public Policy at the Harvard Kennedy School and a Fellow at the Berkman Klein Center for Internet & Society as of November, 2013. He is a board member of the Electronic Frontier Foundation, Access Now, and The Tor Project; and an advisory board member of Electronic Privacy Information Center and VerifiedVoting.org. He is the author of several books on general security topics, computer security and cryptography and is a squid enthusiast. Early life and education Bruce Schneier is the son of Martin Schneier, a Brooklyn Supreme Court judge. He grew up in the Flatbush neighborhood of Brooklyn, New York, attending P.S. 139 and Hunter College High School. After receiving a physics bachelor's degree from the University of Rochester in 1984, he went to American University in Washington, D.C., and got his ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Impossible Differential Cryptanalysis
In cryptography, impossible differential cryptanalysis is a form of differential cryptanalysis for block ciphers. While ordinary differential cryptanalysis tracks differences that propagate through the cipher with greater than expected probability, impossible differential cryptanalysis exploits differences that are impossible (having probability 0) at some intermediate state of the cipher algorithm. Lars Knudsen appears to be the first to use a form of this attack, in the 1998 paper where he introduced his AES candidate, DEAL. The first presentation to attract the attention of the cryptographic community was later the same year at the rump session of CRYPTO '98, in which Eli Biham, Alex Biryukov, and Adi Shamir introduced the name "impossible differential" and used the technique to break 4.5 out of 8.5 rounds of IDEA and 31 out of 32 rounds of the NSA-designed cipher Skipjack. This development led cryptographer Bruce Schneier to speculate that the NSA had no previous knowledge of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Boomerang Attack
In cryptography, the boomerang attack is a method for the cryptanalysis of block ciphers based on differential cryptanalysis. The attack was published in 1999 by David Wagner, who used it to break the COCONUT98 cipher. The boomerang attack has allowed new avenues of attack for many ciphers previously deemed safe from differential cryptanalysis. Refinements on the boomerang attack have been published: the amplified boomerang attack, and the rectangle attack. Due to the similarity of a Merkle–Damgård construction with a block cipher, this attack may also be applicable to certain hash functions such as MD5. The attack The boomerang attack is based on differential cryptanalysis. In differential cryptanalysis, an attacker exploits how differences in the input to a cipher (the plaintext) can affect the resultant difference at the output (the ciphertext). A high probability "differential" (that is, an input difference that will produce a likely output difference) is needed that c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Chosen Plaintext
Chosen or The Chosen may refer to: Books *The Chosen (Potok novel), ''The Chosen'' (Potok novel), a 1967 novel by Chaim Potok * ''The Chosen'', a 1997 novel by L. J. Smith (author), L. J. Smith *The Chosen (Pinto novel), ''The Chosen'' (Pinto novel), a 1999 novel by Ricardo Pinto *The Chosen (Karabel book), ''The Chosen'' (Karabel book), a book by Jerome Karabel *Chosen (Dekker novel), ''Chosen'' (Dekker novel), a 2007 novel by Ted Dekker *Chosen (Cast novel), ''Chosen'' (Cast novel), a novel in the ''House of Night'' fantasy series *Chosen (Image Comics), ''Chosen'' (Image Comics), a comic book series by Mark Millar Film and television *''Holocaust 2000'', also released as ''The Chosen'', a 1977 horror film starring Kirk Douglas *The Chosen (1981 film), ''The Chosen'' (1981 film), a film based on Potok's novel *The Chosen (2015 film), ''The Chosen'' (2015 film), a film starring YouTube personality Kian Lawley *The Chosen (2016 film), ''The Chosen'' (2016 film), by Antonio Chavarr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Key Whitening
In cryptography, key whitening is a technique intended to increase the security of an iterated block cipher. It consists of steps that combine the data with portions of the key. Details The most common form of key whitening is xor–encrypt–xor using a simple XOR before the first round and after the last round of encryption. The first block cipher to use a form of key whitening is DES-X, which simply uses two extra 64-bit keys for whitening, beyond the normal 56-bit key of DES. This is intended to increase the complexity of a brute-force attack, increasing the effective size of the key without major changes in the algorithm. DES-X's inventor, Ron Rivest, named the technique ''whitening''. The cipher FEAL (followed by Khufu and Khafre) introduced the practice of key whitening using portions of the same key used in the rest of the cipher. This offers no additional protection from brute-force attacks, but it can make other attacks more difficult. In a Feistel cipher or simil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


S-box
In cryptography, an S-box (substitution-box) is a basic component of symmetric key algorithms which performs substitution. In block ciphers, they are typically used to obscure the relationship between the key and the ciphertext, thus ensuring Claude Shannon, Shannon's property of confusion and diffusion, confusion. Mathematically, an S-box is a nonlinear vectorial Boolean function. In general, an S-box takes some number of input bits, ''m'', and transforms them into some number of output bits, ''n'', where ''n'' is not necessarily equal to ''m''. An ''m''×''n'' S-box can be implemented as a lookup table with 2''m'' words of ''n'' bits each. Fixed tables are normally used, as in the Data Encryption Standard (DES), but in some ciphers the tables are generated dynamically from the cryptographic key, key (e.g. the Blowfish (cipher), Blowfish and the Twofish encryption algorithms). Example One good example of a fixed table is the S-box from DES (S5), mapping 6-bit input into a 4-bi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]