Khinchin's Constant
In number theory, Khinchin's constant is a mathematical constant related to the simple continued fraction expansions of many real numbers. In particular Aleksandr Yakovlevich Khinchin proved that for almost all real numbers ''x'', the coefficients ''a''''i'' of the continued fraction expansion of ''x'' have a finite geometric mean that is independent of the value of ''x.'' It is known as Khinchin's constant and denoted by ''K0.'' That is, for :x = a_0+\cfrac\; it is almost always true that :\lim_ \left( a_1 a_2 ... a_n \right) ^ = K_0. The decimal value of Khinchin's constant is given by: :K_0 = 2.68545\, 20010 \, 65306\, 44530 \dots Although almost all numbers satisfy this property, it has not been proven for ''any'' real number ''not'' specifically constructed for the purpose. The following numbers whose continued fraction expansions apparently do have this property (based on empirical data) are: * π * Roots of equations with a degree > 2, ''e.g.'' cubic roots and qua ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Number Theory
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example, rational numbers), or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory can often be understood through the study of Complex analysis, analytical objects, such as the Riemann zeta function, that encode properties of the integers, primes or other number-theoretic objects in some fashion (analytic number theory). One may also study real numbers in relation to rational numbers, as for instance how irrational numbers can be approximated by fractions (Diophantine approximation). Number theory is one of the oldest branches of mathematics alongside geometry. One quirk of number theory is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Golden Ratio
In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their summation, sum to the larger of the two quantities. Expressed algebraically, for quantities and with , is in a golden ratio to if \frac = \frac = \varphi, where the Greek letter Phi (letter), phi ( or ) denotes the golden ratio. The constant satisfies the quadratic equation and is an irrational number with a value of The golden ratio was called the extreme and mean ratio by Euclid, and the divine proportion by Luca Pacioli; it also goes by other names. Mathematicians have studied the golden ratio's properties since antiquity. It is the ratio of a regular pentagon's diagonal to its side and thus appears in the Straightedge and compass construction, construction of the dodecahedron and icosahedron. A golden rectangle—that is, a rectangle with an aspect ratio of —may be cut into a square and a smaller rectangle with the same aspect ratio. The golden ratio has bee ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gauss–Kuzmin–Wirsing Operator
In mathematics, the Gauss–Kuzmin–Wirsing operator is the transfer operator of the Gauss map that takes a positive number to the fractional part of its reciprocal. (This is not the same as the Gauss map in differential geometry.) It is named after Carl Gauss, Rodion Kuzmin, and Eduard Wirsing. It occurs in the study of continued fractions; it is also related to the Riemann zeta function. Relationship to the maps and continued fractions The Gauss map The Gauss function (map) ''h'' is : :h(x)=1/x-\lfloor 1/x \rfloor. where \lfloor 1/x \rfloor denotes the floor function. It has an infinite number of jump discontinuities at ''x'' = 1/''n'', for positive integers ''n''. It is hard to approximate it by a single smooth polynomial. Operator on the maps The Gauss–Kuzmin–Wirsing operator G acts on functions f as : fx) = \int_0^1 \delta(x-h(y)) f(y) \, dy = \sum_^\infty \frac f \left(\frac \right). it has the fixed point \rho(x) = \frac, unique up to scaling, whi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Positive Integer
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive integers Some authors acknowledge both definitions whenever convenient. Sometimes, the whole numbers are the natural numbers as well as zero. In other cases, the ''whole numbers'' refer to all of the integers, including negative integers. The counting numbers are another term for the natural numbers, particularly in primary education, and are ambiguous as well although typically start at 1. The natural numbers are used for counting things, like "there are ''six'' coins on the table", in which case they are called ''cardinal numbers''. They are also used to put things in order, like "this is the ''third'' largest city in the country", which are called ''ordinal numbers''. Natural numbers are also used as labels, like jersey numbers on a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Continued Fraction
A continued fraction is a mathematical expression that can be written as a fraction with a denominator that is a sum that contains another simple or continued fraction. Depending on whether this iteration terminates with a simple fraction or not, the continued fraction is finite or infinite. Different fields of mathematics have different terminology and notation for continued fraction. In number theory the standard unqualified use of the term continued fraction refers to the special case where all numerators are 1, and is treated in the article simple continued fraction. The present article treats the case where numerators and denominators are sequences \,\ of constants or functions. From the perspective of number theory, these are called generalized continued fraction. From the perspective of complex analysis or numerical analysis, however, they are just standard, and in the present article they will simply be called "continued fraction". Formulation A continued fraction is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bijection
In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equivalently, a bijection is a relation between two sets such that each element of either set is paired with exactly one element of the other set. A function is bijective if it is invertible; that is, a function f:X\to Y is bijective if and only if there is a function g:Y\to X, the ''inverse'' of , such that each of the two ways for composing the two functions produces an identity function: g(f(x)) = x for each x in X and f(g(y)) = y for each y in Y. For example, the ''multiplication by two'' defines a bijection from the integers to the even numbers, which has the ''division by two'' as its inverse function. A function is bijective if and only if it is both injective (or ''one-to-one'')—meaning that each element in the codomain is mappe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Unit Interval
In mathematics, the unit interval is the closed interval , that is, the set of all real numbers that are greater than or equal to 0 and less than or equal to 1. It is often denoted ' (capital letter ). In addition to its role in real analysis, the unit interval is used to study homotopy theory in the field of topology. In the literature, the term "unit interval" is sometimes applied to the other shapes that an interval from 0 to 1 could take: , , and . However, the notation ' is most commonly reserved for the closed interval . Properties The unit interval is a complete metric space, homeomorphic to the extended real number line. As a topological space, it is compact, contractible, path connected and locally path connected. The Hilbert cube is obtained by taking a topological product of countably many copies of the unit interval. In mathematical analysis, the unit interval is a one-dimensional analytical manifold whose boundary consists of the two points 0 and 1 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lebesgue Measure
In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of higher dimensional Euclidean '-spaces. For lower dimensions or , it coincides with the standard measure of length, area, or volume. In general, it is also called '-dimensional volume, '-volume, hypervolume, or simply volume. It is used throughout real analysis, in particular to define Lebesgue integration. Sets that can be assigned a Lebesgue measure are called Lebesgue-measurable; the measure of the Lebesgue-measurable set A is here denoted by \lambda(A). Henri Lebesgue described this measure in the year 1901 which, a year after, was followed up by his description of the Lebesgue integral. Both were published as part of his dissertation in 1902. Definition For any interval I = ,b/math>, or I = (a, b), in the set \mathbb of real numbers, let \ell(I)= b - a denote its length. For any subset E\subseteq ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rational Numbers
In mathematics, a rational number is a number that can be expressed as the quotient or fraction (mathematics), fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set (mathematics), set of all rational numbers is often referred to as "the rationals", and is closure (mathematics), closed under addition, subtraction, multiplication, and division (mathematics), division by a nonzero rational number. It is a field (mathematics), field under these operations and therefore also called the field of rationals or the field of rational numbers. It is usually denoted by boldface , or blackboard bold A rational number is a real number. The real numbers that are rational are those whose decimal expansion either terminates after a finite number of numerical digit, digits (example: ), or eventually begins to repeating decimal, repeat the same finite sequence of digits over and over (example: ). This st ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ergodic Theory
Ergodic theory is a branch of mathematics that studies statistical properties of deterministic dynamical systems; it is the study of ergodicity. In this context, "statistical properties" refers to properties which are expressed through the behavior of time averages of various functions along trajectories of dynamical systems. The notion of deterministic dynamical systems assumes that the equations determining the dynamics do not contain any random perturbations, noise, etc. Thus, the statistics with which we are concerned are properties of the dynamics. Ergodic theory, like probability theory, is based on general notions of measure theory. Its initial development was motivated by problems of statistical physics. A central concern of ergodic theory is the behavior of a dynamical system when it is allowed to run for a long time. The first result in this direction is the Poincaré recurrence theorem, which claims that almost all points in any subset of the phase space eventua ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Czesław Ryll-Nardzewski
Czesław Ryll-Nardzewski (; 7 October 1926 – 18 September 2015) was a Polish mathematician. Life and career Born in Wilno, Second Polish Republic (now Vilnius, Lithuania), he was a student of Hugo Steinhaus. At the age of 26 he became professor at Warsaw University. In 1959, he became a professor at the Wrocław University of Technology. He was the advisor of 18 PhD theses. His main research areas were measure theory, functional analysis, foundations of mathematics and probability theory. Several theorems bear his name: the Ryll-Nardzewski fixed point theorem, “9. Theorem of Ryll-Nardzewski” (p. 171), “(9.6) Theorem (Ryll-Nardzewski)” (p. 174) the Ryll-Nardzewski theorem See Theorem 7.3.1 Cf. (2.10) in model theory, and the Kuratowski and Ryll-Nardzewski measurable selection theorem. See Theorem 6.9.3 on p. 36 and the historical comment on p. 441 He became a member of the Polish Academy of Sciences in 1967. He died in 2015 at the age of 88 [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dilogarithm
In mathematics, the dilogarithm (or Spence's function), denoted as , is a particular case of the polylogarithm. Two related special functions are referred to as Spence's function, the dilogarithm itself: :\operatorname_2(z) = -\int_0^z\, du \textz \in \Complex and its reflection. For , an infinite series also applies (the integral definition constitutes its analytical extension to the complex plane): :\operatorname_2(z) = \sum_^\infty . Alternatively, the dilogarithm function is sometimes defined as :\int_^ \frac dt = \operatorname_2(1-v). In hyperbolic geometry the dilogarithm can be used to compute the volume of an ideal simplex. Specifically, a simplex whose vertices have cross ratio has hyperbolic volume :D(z) = \operatorname \operatorname_2(z) + \arg(1-z) \log, z, . The function is sometimes called the Bloch-Wigner function. Lobachevsky's function and Clausen's function are closely related functions. William Spence, after whom the function was named by early write ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |