Janson's Inequality
   HOME





Janson's Inequality
In the mathematical theory of probability, Janson's inequality is a collection of related inequalities giving an exponential bound on the probability of many related events happening simultaneously by their pairwise dependence. Informally Janson's inequality involves taking a sample of many independent random binary variables, and a set of subsets of those variables and bounding the probability that the sample will contain any of those subsets by their pairwise correlation. Statement Let \Gamma be our set of variables. We intend to sample these variables according to probabilities p = (p_i \in , 1 i \in \Gamma). Let \Gamma_p \subseteq \Gamma be the random variable of the subset of \Gamma that includes i \in \Gamma with probability p_i. That is, independently, for every i \in \Gamma: \Pr \in \Gamma_p p_i. Let S be a family of subsets of \Gamma. We want to bound the probability that any A \in S is a subset of \Gamma_p. We will bound it using the expectation of the number of A \in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theory Of Probability
Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms of probability, axioms. Typically these axioms formalise probability in terms of a probability space, which assigns a measure (mathematics), measure taking values between 0 and 1, termed the probability measure, to a set of outcomes called the sample space. Any specified subset of the sample space is called an event (probability theory), event. Central subjects in probability theory include discrete and continuous random variables, probability distributions, and stochastic processes (which provide mathematical abstractions of determinism, non-deterministic or uncertain processes or measured Quantity, quantities that may either be single occurrences or evolve over time in a random fashion). Although it is no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binary Data
Binary data is data whose unit can take on only two possible states. These are often labelled as 0 and 1 in accordance with the binary numeral system and Boolean algebra. Binary data occurs in many different technical and scientific fields, where it can be called by different names including '' bit'' (binary digit) in computer science, '' truth value'' in mathematical logic and related domains and '' binary variable'' in statistics. Mathematical and combinatoric foundations A discrete variable that can take only one state contains zero information, and is the next natural number after 1. That is why the bit, a variable with only two possible values, is a standard primary unit of information. A collection of bits may have states: see binary number for details. Number of states of a collection of discrete variables depends exponentially on the number of variables, and only as a power law on number of states of each variable. Ten bits have more () states than three dec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Svante Janson
Carl Svante Janson (born 21 May 1955) is a Swedish mathematician. A member of the Royal Swedish Academy of Sciences since 1994, Janson has been the chaired professor of mathematics at Uppsala University since 1987. In mathematical analysis, Janson has publications in functional analysis (especially harmonic analysis) and probability theory. In mathematical statistics, Janson has made contributions to the theory of U-statistics. In combinatorics, Janson has publications in probabilistic combinatorics, particularly random graphs and in the analysis of algorithms: In the study of random graphs, Janson introduced U-statistics and the Hoeffding decomposition. Biography Svante Janson has already had a long career in mathematics, because he started research at a very young age. From prodigy to docent A child prodigy in mathematics, Janson took high-school and even university classes while in primary school. He was admitted in 1968 to University of Gothenburg at age 12. After his 19 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pseudorandomness
A pseudorandom sequence of numbers is one that appears to be statistically random, despite having been produced by a completely deterministic and repeatable process. Pseudorandom number generators are often used in computer programming, as traditional sources of randomness available to humans (such as rolling dice) rely on physical processes not readily available to computer programs, although developments in hardware random number generator technology have challenged this. Background The generation of random numbers has many uses, such as for random sampling, Monte Carlo methods, board games, or gambling. In physics, however, most processes, such as gravitational acceleration, are deterministic, meaning that they always produce the same outcome from the same starting point. Some notable exceptions are radioactive decay and quantum measurement, which are both modeled as being truly random processes in the underlying physics. Since these processes are not practical sources of r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Coloring
In graph theory, graph coloring is a methodic assignment of labels traditionally called "colors" to elements of a Graph (discrete mathematics), graph. The assignment is subject to certain constraints, such as that no two adjacent elements have the same color. Graph coloring is a special case of graph labeling. In its simplest form, it is a way of coloring the Vertex (graph theory), vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an ''edge coloring'' assigns a color to each Edge (graph theory), edges so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each Face (graph theory), face (or region) so that no two faces that share a boundary have the same color. Vertex coloring is often used to introduce graph coloring problems, since other coloring problems can be transformed into a vertex coloring instance. For example, an edge coloring of a graph is just ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Random Graph
In mathematics, random graph is the general term to refer to probability distributions over graphs. Random graphs may be described simply by a probability distribution, or by a random process which generates them. The theory of random graphs lies at the intersection between graph theory and probability theory. From a mathematical perspective, random graphs are used to answer questions about the properties of ''typical'' graphs. Its practical applications are found in all areas in which complex networks need to be modeled – many random graph models are thus known, mirroring the diverse types of complex networks encountered in different areas. In a mathematical context, ''random graph'' refers almost exclusively to the Erdős–Rényi random graph model. In other contexts, any graph model may be referred to as a ''random graph''. Models A random graph is obtained by starting with a set of ''n'' isolated vertices and adding successive edges between them at random. The a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]