Jacobi's Four-square Theorem
In number theory, Jacobi's four-square theorem gives a formula for the number of ways that a given positive integer can be represented as the sum of four squares (of integers). History The theorem was proved in 1834 by Carl Gustav Jakob Jacobi. Theorem Two representations are considered different if their terms are in different order or if the integer being squared (not just the square) is different; to illustrate, these are three of the eight different ways to represent 1: \begin 1^2 &+ 0^2 + 0^2 + 0^2 \\ 0^2 &+ 1^2 + 0^2 + 0^2 \\ (-1)^2 &+ 0^2 + 0^2 + 0^2. \end The number of ways to represent as the sum of four squares is eight times the sum of the divisors of if is odd and 24 times the sum of the odd divisors of if is even (see divisor function), i.e. r_4(n) = \begin \displaystyle 8\sum_ m & \text n \text, \\ 2pt \displaystyle 24 \sum_ m & \text n \text. \end Equivalently, it is eight times the sum of all its divisors which are not divisible by 4, i.e. r_4(n) = ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jacobi's Theorem (other)
Jacobi's theorem can refer to: *Maximum power theorem, in electrical engineering *The result that the determinant of skew-symmetric matrices with odd size vanishes, see skew-symmetric matrix *Jacobi's four-square theorem In number theory, Jacobi's four-square theorem gives a formula for the number of ways that a given positive integer can be represented as the sum of four squares (of integers). History The theorem was proved in 1834 by Carl Gustav Jakob Jacob ..., in number theory * Jacobi's theorem (geometry), on concurrent lines associated with any triangle * Jacobi's theorem on the normal indicatrix, in differential geometry * Jacobi's theorem on conjugate points, in differential geometry {{disambig ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Theta Series
In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. Theta functions are parametrized by points in a tube domain inside a complex Lagrangian Grassmannian, namely the Siegel upper half space. The most common form of theta function is that occurring in the theory of elliptic functions. With respect to one of the complex variables (conventionally called ), a theta function has a property expressing its behavior with respect to the addition of a period of the associated elliptic functions, making it a quasiperiodic function. In the abstract theory this quasiperiodicity comes from the cohomology class of a line bundle on a complex torus, a condition of descent. One interpretation of theta functions when dealing with the heat equation is that "a theta function is a special function that describes the evolution of temperature on a segment domain su ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cambridge University Press
Cambridge University Press was the university press of the University of Cambridge. Granted a letters patent by King Henry VIII in 1534, it was the oldest university press in the world. Cambridge University Press merged with Cambridge Assessment to form Cambridge University Press and Assessment under Queen Elizabeth II's approval in August 2021. With a global sales presence, publishing hubs, and offices in more than 40 countries, it published over 50,000 titles by authors from over 100 countries. Its publications include more than 420 academic journals, monographs, reference works, school and university textbooks, and English language teaching and learning publications. It also published Bibles, runs a bookshop in Cambridge, sells through Amazon, and has a conference venues business in Cambridge at the Pitt Building and the Sir Geoffrey Cass Sports and Social Centre. It also served as the King's Printer. Cambridge University Press, as part of the University of Cambridge, was a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sum Of Squares Function
In number theory, the sum of squares function is an arithmetic function that gives the number of representations for a given positive integer as the sum of squares, where representations that differ only in the order of the summands or in the signs of the numbers being squared are counted as different. It is denoted by . Definition The function is defined as :r_k(n) = , \, where , \,\ , denotes the cardinality of a set. In other words, is the number of ways can be written as a sum of squares. For example, r_2(1) = 4 since 1 = 0^2 + (\pm 1)^2 = (\pm 1)^2 + 0^2 where each sum has two sign combinations, and also r_2(2) = 4 since 2 = (\pm 1)^2 + (\pm 1)^2 with four sign combinations. On the other hand, r_2(3) = 0 because there is no way to represent 3 as a sum of two squares. Formulae ''k'' = 2 The number of ways to write a natural number as sum of two squares is given by . It is given explicitly by :r_2(n) = 4(d_1(n)-d_3(n)) where is the number of divisors o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lambert Series
In mathematics, a Lambert series, named for Johann Heinrich Lambert, is a series taking the form :S(q)=\sum_^\infty a_n \frac . It can be resummed formally by expanding the denominator: :S(q)=\sum_^\infty a_n \sum_^\infty q^ = \sum_^\infty b_m q^m where the coefficients of the new series are given by the Dirichlet convolution of ''a''''n'' with the constant function 1(''n'') = 1: :b_m = (a*1)(m) = \sum_ a_n. \, This series may be inverted by means of the Möbius inversion formula, and is an example of a Möbius transform. Examples Since this last sum is a typical number-theoretic sum, almost any natural multiplicative function will be exactly summable when used in a Lambert series. Thus, for example, one has :\sum_^\infty q^n \sigma_0(n) = \sum_^\infty \frac where \sigma_0(n)=d(n) is the number of positive divisors of the number ''n''. For the higher order sum-of-divisor functions, one has :\sum_^\infty q^n \sigma_\alpha(n) = \sum_^\infty \frac = ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lagrange's Four-square Theorem
Lagrange's four-square theorem, also known as Bachet's conjecture, states that every natural number, nonnegative integer can be represented as a sum of four non-negative integer square number, squares. That is, the squares form an additive basis of order four: p = a^2 + b^2 + c^2 + d^2, where the four numbers a, b, c, d are integers. For illustration, 3, 31, and 310 can be represented as the sum of four squares as follows: \begin 3 & = 1^2+1^2+1^2+0^2 \\[3pt] 31 & = 5^2+2^2+1^2+1^2 \\[3pt] 310 & = 17^2+4^2+2^2+1^2 \\[3pt] & = 16^2 + 7^2 + 2^2 +1^2 \\[3pt] & = 15^2 + 9^2 + 2^2 +0^2 \\[3pt] & = 12^2 + 11^2 + 6^2 + 3^2. \end This theorem was proven by Joseph Louis Lagrange in 1770. It is a special case of the Fermat polygonal number theorem. Historical development From examples given in the ''Arithmetica,'' it is clear that Diophantus was aware of the theorem. This book was translated in 1621 into Latin by Claude Gaspard Bachet de Méziriac, Bachet (Claude Gaspard Bachet de Mézi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Eisenstein Series
Eisenstein series, named after German mathematician Gotthold Eisenstein, are particular modular forms with infinite series expansions that may be written down directly. Originally defined for the modular group, Eisenstein series can be generalized in the theory of automorphic forms. Eisenstein series for the modular group Let be a complex number with strictly positive imaginary part. Define the holomorphic Eisenstein series of weight , where is an integer, by the following series: :G_(\tau) = \sum_ \frac. This series absolutely converges to a holomorphic function of in the upper half-plane and its Fourier expansion given below shows that it extends to a holomorphic function at . It is a remarkable fact that the Eisenstein series is a modular form. Indeed, the key property is its -covariance. Explicitly if and then :G_ \left( \frac \right) = (c\tau +d)^ G_(\tau) Note that is necessary such that the series converges absolutely, whereas needs to be even otherwis ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linear Combination
In mathematics, a linear combination or superposition is an Expression (mathematics), expression constructed from a Set (mathematics), set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of ''x'' and ''y'' would be any expression of the form ''ax'' + ''by'', where ''a'' and ''b'' are constants). The concept of linear combinations is central to linear algebra and related fields of mathematics. Most of this article deals with linear combinations in the context of a vector space over a field (mathematics), field, with some generalizations given at the end of the article. Definition Let ''V'' be a vector space over the field ''K''. As usual, we call elements of ''V'' ''vector space, vectors'' and call elements of ''K'' ''scalar (mathematics), scalars''. If v1,...,v''n'' are vectors and ''a''1,...,''a''''n'' are scalars, then the ''linear combination of those vectors with those scalars as coefficients'' is :a_1 \mathbf v_1 + a_2 \mathbf ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Modular Form
In mathematics, a modular form is a holomorphic function on the complex upper half-plane, \mathcal, that roughly satisfies a functional equation with respect to the group action of the modular group and a growth condition. The theory of modular forms has origins in complex analysis, with important connections with number theory. Modular forms also appear in other areas, such as algebraic topology, sphere packing, and string theory. Modular form theory is a special case of the more general theory of automorphic forms, which are functions defined on Lie groups that transform nicely with respect to the action of certain discrete subgroups, generalizing the example of the modular group \mathrm_2(\mathbb Z) \subset \mathrm_2(\mathbb R). Every modular form is attached to a Galois representation. The term "modular form", as a systematic description, is usually attributed to Erich Hecke. The importance of modular forms across multiple field of mathematics has been humorously re ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lattice (discrete Subgroup)
In Lie theory and related areas of mathematics, a lattice in a locally compact group is a discrete subgroup with the property that the quotient space has finite invariant measure. In the special case of subgroups of R''n'', this amounts to the usual geometric notion of a lattice as a periodic subset of points, and both the algebraic structure of lattices and the geometry of the space of all lattices are relatively well understood. The theory is particularly rich for lattices in semisimple Lie groups or more generally in semisimple algebraic groups over local fields. In particular there is a wealth of rigidity results in this setting, and a celebrated theorem of Grigory Margulis states that in most cases all lattices are obtained as arithmetic groups. Lattices are also well-studied in some other classes of groups, in particular groups associated to Kac–Moody algebras and automorphisms groups of regular trees (the latter are known as ''tree lattices''). Lattices a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jacobi Triple Product
In mathematics, the Jacobi triple product is the identity: :\prod_^\infty \left( 1 - x^\right) \left( 1 + x^ y^2\right) \left( 1 +\frac\right) = \sum_^\infty x^ y^, for complex numbers ''x'' and ''y'', with , ''x'', < 1 and ''y'' ≠ 0. It was introduced by in his work '' Fundamenta Nova Theoriae Functionum Ellipticarum''. The Jacobi triple product identity is the Macdonald identity for the affine root system of type ''A''1, and is the Weyl denominator formula for the corresponding affine Kac–Moody algebra. Properties Jacobi's proof relies on Euler's pentagonal number theorem, which is itself a specific case of the Jacobi triple product identity. Let x=q\sqrt q and y^2=-\sqrt. Then we have :\phi(q) = \prod_^\infty \left(1-q^m \right) = \sum_^\infty (-1)^n q^. The Rogers–Ramanujan identities follow with x=q^2\sqrt q, y^2=-\sqrt and x=q^2\sqrt q, y^2=-q\sqrt. The Jacobi Triple Product also allows the Jacobi theta function to be written as an infinite product a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Number Theory
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example, rational numbers), or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory can often be understood through the study of Complex analysis, analytical objects, such as the Riemann zeta function, that encode properties of the integers, primes or other number-theoretic objects in some fashion (analytic number theory). One may also study real numbers in relation to rational numbers, as for instance how irrational numbers can be approximated by fractions (Diophantine approximation). Number theory is one of the oldest branches of mathematics alongside geometry. One quirk of number theory is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |