Integers
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative integers. The set (mathematics), set of all integers is often denoted by the boldface or blackboard bold The set of natural numbers \mathbb is a subset of \mathbb, which in turn is a subset of the set of all rational numbers \mathbb, itself a subset of the real numbers \mathbb. Like the set of natural numbers, the set of integers \mathbb is Countable set, countably infinite. An integer may be regarded as a real number that can be written without a fraction, fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, , 5/4, and Square root of 2, are not. The integers form the smallest Group (mathematics), group and the smallest ring (mathematics), ring containing the natural numbers. In algebraic number theory, the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Group (mathematics)
In mathematics, a group is a Set (mathematics), set with an Binary operation, operation that combines any two elements of the set to produce a third element within the same set and the following conditions must hold: the operation is Associative property, associative, it has an identity element, and every element of the set has an inverse element. For example, the integers with the addition, addition operation form a group. The concept of a group was elaborated for handling, in a unified way, many mathematical structures such as numbers, geometric shapes and polynomial roots. Because the concept of groups is ubiquitous in numerous areas both within and outside mathematics, some authors consider it as a central organizing principle of contemporary mathematics. In geometry, groups arise naturally in the study of symmetries and geometric transformations: The symmetries of an object form a group, called the symmetry group of the object, and the transformations of a given type form a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Negative Number
In mathematics, a negative number is the opposite (mathematics), opposite of a positive real number. Equivalently, a negative number is a real number that is inequality (mathematics), less than 0, zero. Negative numbers are often used to represent the Magnitude (mathematics), magnitude of a loss or deficiency. A debt that is owed may be thought of as a negative asset. If a quantity, such as the charge on an electron, may have either of two opposite senses, then one may choose to distinguish between those senses—perhaps arbitrarily—as ''positive'' and ''negative''. Negative numbers are used to describe values on a scale that goes below zero, such as the Celsius and Fahrenheit scales for temperature. The laws of arithmetic for negative numbers ensure that the common-sense idea of an opposite is reflected in arithmetic. For example, −(−3) = 3 because the opposite of an opposite is the original value. Negative numbers are usually written with a Plus and minus signs, minus sig ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Natural Number
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive integers Some authors acknowledge both definitions whenever convenient. Sometimes, the whole numbers are the natural numbers as well as zero. In other cases, the ''whole numbers'' refer to all of the integers, including negative integers. The counting numbers are another term for the natural numbers, particularly in primary education, and are ambiguous as well although typically start at 1. The natural numbers are used for counting things, like "there are ''six'' coins on the table", in which case they are called ''cardinal numbers''. They are also used to put things in order, like "this is the ''third'' largest city in the country", which are called ''ordinal numbers''. Natural numbers are also used as labels, like Number (sports), jersey ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
−1
In mathematics, −1 (negative one or minus one) is the additive inverse of 1, that is, the number that when added to 1 gives the additive identity element, 0. It is the negative integer greater than negative two (−2) and less than 0. In mathematics Algebraic properties Multiplying a number by −1 is equivalent to changing the sign of the number – that is, for any we have . This can be proved using the distributive law and the axiom that 1 is the multiplicative identity: :. Here we have used the fact that any number times 0 equals 0, which follows by cancellation from the equation :. In other words, :, so is the additive inverse of , i.e. , as was to be shown. The square of −1 (that is −1 multiplied by −1) equals 1. As a consequence, a product of two negative numbers is positive. For an algebraic proof of this result, start with the equation :. The first equality follows from the above result, and the second follows from the definition of −1 as addi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Integer
In algebraic number theory, an algebraic integer is a complex number that is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial (a polynomial whose leading coefficient is 1) whose coefficients are integers. The set of all algebraic integers is closed under addition, subtraction and multiplication and therefore is a commutative subring of the complex numbers. The ring of integers of a number field , denoted by , is the intersection of and : it can also be characterized as the maximal order of the field . Each algebraic integer belongs to the ring of integers of some number field. A number is an algebraic integer if and only if the ring \mathbbalpha/math> is finitely generated as an abelian group, which is to say, as a \mathbb- module. Definitions The following are equivalent definitions of an algebraic integer. Let be a number field (i.e., a finite extension of \mathbb, the field of rational numbers), in other words ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Real Number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and in many other branches of mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives. The set of real numbers, sometimes called "the reals", is traditionally denoted by a bold , often using blackboard bold, . The adjective ''real'', used in the 17th century by René Descartes, distinguishes real numbers from imaginary numbers such as the square roots of . The real numbers include the rational numbers, such as the integer and the fraction . The rest of the real numbers are called irrational numbers. Some irrational numbers (as well as all the rationals) a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Entier
In mathematics, the floor function is the function that takes as input a real number , and gives as output the greatest integer less than or equal to , denoted or . Similarly, the ceiling function maps to the least integer greater than or equal to , denoted or . For example, for floor: , , and for ceiling: , and . The floor of is also called the integral part, integer part, greatest integer, or entier of , and was historically denoted (among other notations). However, the same term, ''integer part'', is also used for truncation towards zero, which differs from the floor function for negative numbers. For an integer , . Although and produce graphs that appear exactly alike, they are not the same when the value of is an exact integer. For example, when , . However, if , then , while . Notation The ''integral part'' or ''integer part'' of a number ( in the original) was first defined in 1798 by Adrien-Marie Legendre in his proof of the Legendre's formula. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Number
A number is a mathematical object used to count, measure, and label. The most basic examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers can be represented by symbols, called ''numerals''; for example, "5" is a numeral that represents the number five. As only a relatively small number of symbols can be memorized, basic numerals are commonly organized in a numeral system, which is an organized way to represent any number. The most common numeral system is the Hindu–Arabic numeral system, which allows for the representation of any Integer, non-negative integer using a combination of ten fundamental numeric symbols, called numerical digit, digits. In addition to their use in counting and measuring, numerals are often used for labels (as with telephone numbers), for ordering (as with serial numbers), and for codes (as with ISBNs). In common usage, a ''numeral'' is not clearly dist ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ring (mathematics)
In mathematics, a ring is an algebraic structure consisting of a set with two binary operations called ''addition'' and ''multiplication'', which obey the same basic laws as addition and multiplication of integers, except that multiplication in a ring does not need to be commutative. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series. A ''ring'' may be defined as a set that is endowed with two binary operations called ''addition'' and ''multiplication'' such that the ring is an abelian group with respect to the addition operator, and the multiplication operator is associative, is distributive over the addition operation, and has a multiplicative identity element. (Some authors apply the term ''ring'' to a further generalization, often called a '' rng'', that omits the requirement for a multiplicative identity, and instead call the structure defi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Set Theory
Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of ''naive set theory''. After the discovery of Paradoxes of set theory, paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox), various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Infinite Set
In set theory, an infinite set is a set that is not a finite set. Infinite sets may be countable or uncountable. Properties The set of natural numbers (whose existence is postulated by the axiom of infinity) is infinite. It is the only set that is directly required by the axioms to be infinite. The existence of any other infinite set can be proved in Zermelo–Fraenkel set theory (ZFC), but only by showing that it follows from the existence of the natural numbers. A set is infinite if and only if for every natural number, the set has a subset whose cardinality is that natural number. If the axiom of choice holds, then a set is infinite if and only if it includes a countable infinite subset. If a set of sets is infinite or contains an infinite element, then its union is infinite. The power set of an infinite set is infinite. Any superset of an infinite set is infinite. If an infinite set is partitioned into finitely many subsets, then at least one of them must be infinite ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |