Impedance Matching
In electrical engineering, impedance matching is the practice of designing or adjusting the input impedance or output impedance of an electrical device for a desired value. Often, the desired value is selected to maximize power transfer or minimize signal reflection. For example, impedance matching typically is used to improve power transfer from a radio transmitter via the interconnecting transmission line to the antenna. Signals on a transmission line will be transmitted without reflections if the transmission line is terminated with a matching impedance. Techniques of impedance matching include transformers, adjustable networks of lumped resistance, capacitance and inductance, or properly proportioned transmission lines. Practical impedance-matching devices will generally provide best results over a specified frequency band. The concept of impedance matching is widespread in electrical engineering, but is relevant in other applications in which a form of energy ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Source And Load Circuit Z (2)
Source may refer to: Research * Historical document * Historical source * Source (intelligence) or sub source, typically a confidential provider of non open-source intelligence * Source (journalism), a person, publication, publishing institute or other record or document that gives information * Source document, a document in which data collected for a clinical trial is first recorded * Source text, in research (especially in the humanities), a source of information referred to by citation ** Primary source, a first-hand written evidence of history made at the time of the event by someone who was present ** Secondary source, a written account of history based upon the evidence from primary sources ** Tertiary source, a compilation based upon primary and secondary sources * Sources (website), a directory of expert contacts and media spokespersons * Open source, a philosophy of dissemination of intellectual products Law * Sources of international law, the materials and processes ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Electrical Energy
Electrical energy is the energy transferred as electric charges move between points with different electric potential, that is, as they move across a voltage, potential difference. As electric potential is lost or gained, work is done changing the energy of some system. The amount of work in Joule, joules is given by the product of the charge that has moved, in Coulomb, coulombs, and the potential difference that has been crossed, in Volt, volts. Electrical energy is usually sold by the kilowatt hour (1 kW·h = 3.6 MJ) which is the product of the power in kilowatts multiplied by running time in hours. Electric utilities measure energy using an electricity meter, which keeps a running total of the electrical energy delivered to a customer. Electric heating is an example of converting electrical energy into thermal energy. The simplest and most common type of electric heater uses electrical resistance to convert the energy. There are other ways to use electrical energy. Electri ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Electrical Reactance
In electrical circuits, reactance is the opposition presented to alternating current by inductance and capacitance. It's measured in Ohm, Ω (Ohms). Along with resistance, it is one of two elements of Electrical impedance, impedance; however, while both elements involve transfer of electrical energy, no Joule heating, dissipation of electrical energy as heat occurs in reactance; instead, the reactance stores energy until a quarter-cycle later when the energy is returned to the circuit. Greater reactance gives smaller current for the same applied voltage. Reactance is used to compute amplitude and Phase (waves), phase changes of Sine wave, sinusoidal alternating current going through a circuit element. Like resistance, reactance is measured in ohms, with positive values indicating ''inductive'' reactance and negative indicating ''capacitive'' reactance. It is denoted by the symbol X. An ideal resistor has zero reactance, whereas ideal reactors have no shunt conductance and no ser ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Real Number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and in many other branches of mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives. The set of real numbers, sometimes called "the reals", is traditionally denoted by a bold , often using blackboard bold, . The adjective ''real'', used in the 17th century by René Descartes, distinguishes real numbers from imaginary numbers such as the square roots of . The real numbers include the rational numbers, such as the integer and the fraction . The rest of the real numbers are called irrational numbers. Some irrational numbers (as well as all the rationals) a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Electrical Resistance
The electrical resistance of an object is a measure of its opposition to the flow of electric current. Its reciprocal quantity is , measuring the ease with which an electric current passes. Electrical resistance shares some conceptual parallels with mechanical friction. The SI unit of electrical resistance is the ohm (), while electrical conductance is measured in siemens (S) (formerly called the 'mho' and then represented by ). The resistance of an object depends in large part on the material it is made of. Objects made of electrical insulators like rubber tend to have very high resistance and low conductance, while objects made of electrical conductors like metals tend to have very low resistance and high conductance. This relationship is quantified by resistivity or conductivity. The nature of a material is not the only factor in resistance and conductance, however; it also depends on the size and shape of an object because these properties are extensive rather tha ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complex Number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a + bi, where and are real numbers. Because no real number satisfies the above equation, was called an imaginary number by René Descartes. For the complex number is called the , and is called the . The set of complex numbers is denoted by either of the symbols \mathbb C or . Despite the historical nomenclature, "imaginary" complex numbers have a mathematical existence as firm as that of the real numbers, and they are fundamental tools in the scientific description of the natural world. Complex numbers allow solutions to all polynomial equations, even those that have no solutions in real numbers. More precisely, the fundamental theorem of algebra asserts that every non-constant polynomial equation with real or complex coefficie ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ohm (unit)
Ohm (symbol Ω) is a unit of electrical resistance named after Georg Ohm. Ohm or OHM may also refer to: People * Georg Ohm (1789–1854), German physicist and namesake of the term ''ohm'' * Germán Ohm (born 1936), Mexican boxer * Jörg Ohm (1944–2020), former East German football player * Martin Ohm (1792–1872), German mathematician * Rebecca Ohm, United States Air Force officer and fighter pilot * Rune Ohm (born 1980), Danish handball player * Thorsten Ohm, CEO of VDM Publishing * Pawat Chittsawangdee, Thai actor, nicknamed Ohm * Thitiwat Ritprasert, Thai actor, nicknamed Ohm Places Germany * Ohm (river), right tributary of the Lahn near Cölbe * Zwester Ohm, left tributary of the Lahn near Fronhausen Outer space * 24750 Ohm, an List of minor planets#24701–24800, outer main belt asteroid * Ohm (crater) on the Moon Science and technology * Acoustic ohm, a unit of measurement of acoustic impedance * Ohm's law, law that relates electrical resistance, current, and voltage * O ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Thermal Impedance
In heat transfer, thermal engineering, and thermodynamics, thermal conductance and thermal resistance are fundamental concepts that describe the ability of materials or systems to conduct heat and the opposition they offer to the heat current. The ability to manipulate these properties allows engineers to control temperature gradient, prevent thermal shock, and maximize the efficiency of thermal systems. Furthermore, these principles find applications in a multitude of fields, including materials science, mechanical engineering, electronics, and energy management. Knowledge of these principles is crucial in various scientific, engineering, and everyday applications, from designing efficient temperature control, thermal insulation, and thermal management in industrial processes to optimizing the performance of electronic devices. Thermal conductance (''G'') measures the ability of a material or system to conduct heat. It provides insights into the ease with which heat can pass ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Wave Impedance
The wave impedance of an electromagnetic wave is the ratio of the transverse components of the electric and magnetic fields (the transverse components being those at right angles to the direction of propagation). For a transverse-electric-magnetic ( TEM) plane wave traveling through a homogeneous medium, the wave impedance is everywhere equal to the intrinsic impedance of the medium. In particular, for a plane wave travelling through empty space, the wave impedance is equal to the impedance of free space. The symbol ''Z'' is used to represent it and it is expressed in units of ohms. The symbol ''η'' (eta) may be used instead of ''Z'' for wave impedance to avoid confusion with electrical impedance. Definition The wave impedance is given by : Z = where E_0^-(x) is the electric field and H_0^-(x) is the magnetic field, in phasor representation. The impedance is, in general, a complex number. In terms of the parameters of an electromagnetic wave and the medium it travels through ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Magnetic Impedance
Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other. Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, magnetism is one of two aspects of electromagnetism. The most familiar effects occur in ferromagnetic materials, which are strongly attracted by magnetic fields and can be magnetized to become permanent magnets, producing magnetic fields themselves. Demagnetizing a magnet is also possible. Only a few substances are ferromagnetic; the most common ones are iron, cobalt, nickel, and their alloys. All substances exhibit some type of magnetism. Magnetic materials are classified according to their bulk susceptibility. Ferromagnetism is responsible for most of the effects of magnetism encountered in everyday life, but there are actually several types of magnetism. Paramagnetic substances, such as aluminium and oxygen, are weakly attracted to an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Acoustic Impedance
Acoustic impedance and specific acoustic impedance are measures of the opposition that a system presents to the acoustic flow resulting from an acoustic pressure applied to the system. The International System of Units, SI unit of acoustic impedance is the pascal-second per cubic metre (symbol Pa·s/m3), or in the MKS system of units, MKS system the rayl per square metre (Rayl/m2), while that of specific acoustic impedance is the pascal-second per metre (Pa·s/m), or in the MKS system the rayl (Rayl). There is a Mechanical–electrical analogies#Impedance analogies, close analogy with electrical impedance, which measures the opposition that a system presents to the electric current resulting from a voltage applied to the system. Mathematical definitions Acoustic impedance For a LTI system theory, linear time-invariant system, the relationship between the acoustic pressure applied to the system and the resulting acoustic volume flow rate through a surface perpendicular to the di ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mechanical Impedance
Mechanical impedance is a measure of how much a structure resists motion when subjected to a harmonic force. It relates forces with velocities acting on a mechanical system. The mechanical impedance of a point on a structure is the ratio of the force applied at a point to the resulting velocity at that point. Mechanical impedance is the inverse of mechanical admittance or mobility. The mechanical impedance is a function of the frequency \omega of the applied force and can vary greatly over frequency. At resonance frequencies, the mechanical impedance will be lower, meaning less force is needed to cause a structure to move at a given velocity. A simple example of this is pushing a child on a swing. For the greatest swing amplitude, the frequency of the pushes must be near the resonant frequency of the system. \mathbf(\omega) = \mathbf(\omega)\mathbf(\omega) Where, \mathbf is the force vector, \mathbf is the velocity vector, \mathbf is the impedance matrix and \omega is the angul ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |