HOME
*



picture info

Hoffman–Singleton Graph
In the mathematical field of graph theory, the Hoffman–Singleton graph is a 7- regular undirected graph with 50 vertices and 175 edges. It is the unique strongly regular graph with parameters (50,7,0,1). It was constructed by Alan Hoffman and Robert Singleton while trying to classify all Moore graphs, and is the highest-order Moore graph known to exist. Since it is a Moore graph where each vertex has degree 7, and the girth is 5, it is a (7,5)-cage. Construction Here are two constructions of the Hoffman–Singleton graph. Construction from pentagons and pentagrams Take five pentagons ''Ph'' and five pentagrams ''Qi'' . Join vertex ''j'' of ''Ph'' to vertex ''h''·''i''+''j'' of ''Qi''. (All indices are modulo 5.) Construction from PG(3,2) Take a Fano plane on seven elements, such as and apply all 2520 even permutations on the 7-set ''abcdefg''. Canonicalize each such Fano plane (e.g. by reducing to lexicographic order) and discard duplicates. Exactly 15 Fano planes remai ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Girth (graph Theory)
In graph theory, the girth of an undirected graph is the length of a shortest cycle contained in the graph. If the graph does not contain any cycles (that is, it is a forest), its girth is defined to be infinity. For example, a 4-cycle (square) has girth 4. A grid has girth 4 as well, and a triangular mesh has girth 3. A graph with girth four or more is triangle-free. Cages A cubic graph (all vertices have degree three) of girth that is as small as possible is known as a -cage (or as a -cage). The Petersen graph is the unique 5-cage (it is the smallest cubic graph of girth 5), the Heawood graph is the unique 6-cage, the McGee graph is the unique 7-cage and the Tutte eight cage is the unique 8-cage. There may exist multiple cages for a given girth. For instance there are three nonisomorphic 10-cages, each with 70 vertices: the Balaban 10-cage, the Harries graph and the Harries–Wong graph. Image:Petersen1 tiny.svg, The Petersen graph has a girth of 5 Image:Heawood_Graph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Frobenius Automorphism
In commutative algebra and field theory, the Frobenius endomorphism (after Ferdinand Georg Frobenius) is a special endomorphism of commutative rings with prime characteristic , an important class which includes finite fields. The endomorphism maps every element to its -th power. In certain contexts it is an automorphism, but this is not true in general. Definition Let be a commutative ring with prime characteristic (an integral domain of positive characteristic always has prime characteristic, for example). The Frobenius endomorphism ''F'' is defined by :F(r) = r^p for all ''r'' in ''R''. It respects the multiplication of ''R'': :F(rs) = (rs)^p = r^ps^p = F(r)F(s), and is 1 as well. Moreover, it also respects the addition of . The expression can be expanded using the binomial theorem. Because is prime, it divides but not any for ; it therefore will divide the numerator, but not the denominator, of the explicit formula of the binomial coefficients :\frac, if . Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Projective Special Unitary Group
In mathematics, the projective unitary group is the quotient of the unitary group by the right multiplication of its center, , embedded as scalars. Abstractly, it is the holomorphic isometry group of complex projective space, just as the projective orthogonal group is the isometry group of real projective space. In terms of matrices, elements of are complex unitary matrices, and elements of the center are diagonal matrices equal to multiplied by the identity matrix. Thus, elements of correspond to equivalence classes of unitary matrices under multiplication by a constant phase . Abstractly, given a Hermitian space , the group is the image of the unitary group in the automorphism group of the projective space . Projective special unitary group The projective special unitary group PSU() is equal to the projective unitary group, in contrast to the orthogonal case. The connections between the U(), SU(), their centers, and the projective unitary groups is shown at right. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Semidirect Product
In mathematics, specifically in group theory, the concept of a semidirect product is a generalization of a direct product. There are two closely related concepts of semidirect product: * an ''inner'' semidirect product is a particular way in which a group can be made up of two subgroups, one of which is a normal subgroup. * an ''outer'' semidirect product is a way to construct a new group from two given groups by using the Cartesian product as a set and a particular multiplication operation. As with direct products, there is a natural equivalence between inner and outer semidirect products, and both are commonly referred to simply as ''semidirect products''. For finite groups, the Schur–Zassenhaus theorem provides a sufficient condition for the existence of a decomposition as a semidirect product (also known as splitting extension). Inner semidirect product definitions Given a group with identity element , a subgroup , and a normal subgroup , the following statements ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Automorphism Group
In mathematics, the automorphism group of an object ''X'' is the group consisting of automorphisms of ''X'' under composition of morphisms. For example, if ''X'' is a finite-dimensional vector space, then the automorphism group of ''X'' is the group of invertible linear transformations from ''X'' to itself (the general linear group of ''X''). If instead ''X'' is a group, then its automorphism group \operatorname(X) is the group consisting of all group automorphisms of ''X''. Especially in geometric contexts, an automorphism group is also called a symmetry group. A subgroup of an automorphism group is sometimes called a transformation group. Automorphism groups are studied in a general way in the field of category theory. Examples If ''X'' is a set with no additional structure, then any bijection from ''X'' to itself is an automorphism, and hence the automorphism group of ''X'' in this case is precisely the symmetric group of ''X''. If the set ''X'' has additional struct ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Higman–Sims Graph
In mathematical graph theory, the Higman–Sims graph is a 22-regular graph, regular undirected graph with 100 vertices and 1100 edges. It is the unique strongly regular graph srg(100,22,0,6), where no neighboring pair of vertices share a common neighbor and each non-neighboring pair of vertices share six common neighbors. It was first constructed by and rediscovered in 1968 by Donald G. Higman and Charles C. Sims as a way to define the Higman–Sims group, a subgroup of Index of a subgroup, index two in the group of automorphisms of the Higman–Sims graph. Construction From M22 graph Take the M22 graph, a strongly regular graph srg(77,16,0,4) and augment it with 22 new vertices corresponding to the points of S(3,6,22), each block being connected to its points, and one additional vertex ''C'' connected to the 22 points. From Hoffman–Singleton graph There are 100 independent set (graph theory), independent sets of size 15 in the Hoffman–Singleton graph. Create a new graph w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Odd Graph
In the mathematical field of graph theory, the odd graphs ''On'' are a family of symmetric graphs with high odd girth, defined from certain set systems. They include and generalize the Petersen graph. Definition and examples The odd graph ''On'' has one vertex for each of the (''n'' − 1)-element subsets of a (2''n'' − 1)-element set. Two vertices are connected by an edge if and only if the corresponding subsets are disjoint. That is, ''On'' is the Kneser graph ''KG''(2''n'' − 1,''n'' − 1). ''O''2 is a triangle, while ''O''3 is the familiar Petersen graph. The generalized odd graphs are defined as distance-regular graphs with diameter ''n'' − 1 and odd girth 2''n'' − 1 for some ''n''. They include the odd graphs and the folded cube graphs. History and applications Although the Petersen graph has been known since 1898, its definition as an odd graph dates to the work of , who also stu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Levi Graph
In combinatorial mathematics, a Levi graph or incidence graph is a bipartite graph associated with an incidence structure.. See in particulap. 181 From a collection of points and lines in an incidence geometry or a projective configuration, we form a graph with one vertex per point, one vertex per line, and an edge for every incidence between a point and a line. They are named for Friedrich Wilhelm Levi, who wrote about them in 1942. The Levi graph of a system of points and lines usually has girth at least six: Any 4- cycles would correspond to two lines through the same two points. Conversely any bipartite graph with girth at least six can be viewed as the Levi graph of an abstract incidence structure. Levi graphs of configurations are biregular, and every biregular graph with girth at least six can be viewed as the Levi graph of an abstract configuration.. Levi graphs may also be defined for other types of incidence structure, such as the incidences between points and planes in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Even Permutation
In mathematics, when ''X'' is a finite set with at least two elements, the permutations of ''X'' (i.e. the bijective functions from ''X'' to ''X'') fall into two classes of equal size: the even permutations and the odd permutations. If any total ordering of ''X'' is fixed, the parity (oddness or evenness) of a permutation \sigma of ''X'' can be defined as the parity of the number of inversions for ''σ'', i.e., of pairs of elements ''x'', ''y'' of ''X'' such that and . The sign, signature, or signum of a permutation ''σ'' is denoted sgn(''σ'') and defined as +1 if ''σ'' is even and −1 if ''σ'' is odd. The signature defines the alternating character of the symmetric group S''n''. Another notation for the sign of a permutation is given by the more general Levi-Civita symbol (''ε''''σ''), which is defined for all maps from ''X'' to ''X'', and has value zero for non-bijective maps. The sign of a permutation can be explicitly expressed as : where ''N''(''σ'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fano Plane
In finite geometry, the Fano plane (after Gino Fano) is a finite projective plane with the smallest possible number of points and lines: 7 points and 7 lines, with 3 points on every line and 3 lines through every point. These points and lines cannot exist with this pattern of incidences in Euclidean geometry, but they can be given coordinates using the finite field with two elements. The standard notation for this plane, as a member of a family of projective spaces, is . Here stands for "projective geometry", the first parameter is the geometric dimension (it is a plane, of dimension 2) and the second parameter is the order (the number of points per line, minus one). The Fano plane is an example of a finite incidence structure, so many of its properties can be established using combinatorial techniques and other tools used in the study of incidence geometries. Since it is a projective space, algebraic techniques can also be effective tools in its study. Homogeneous coordinat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

PG(3,2)
In finite geometry, PG(3,2) is the smallest three-dimensional projective space. It can be thought of as an extension of the Fano plane. It has 15 points, 35 lines, and 15 planes. It also has the following properties: * Each point is contained in 7 lines and 7 planes * Each line is contained in 3 planes and contains 3 points * Each plane contains 7 points and 7 lines * Each plane is isomorphic to the Fano plane * Every pair of distinct planes intersect in a line * A line and a plane not containing the line intersect in exactly one point Constructions Construction from ''K''6 Take a complete graph ''K''6. It has 15 edges, 15 perfect matchings and 20 triangles. Create a point for each of the 15 edges, and a line for each of the 20 triangles and 15 matchings. The incidence structure between each triangle or matching (line) to its three constituent edges (points), induces a PG(3,2). Construction from Fano planes Take a Fano plane and apply all 5040 permutations of its 7 points. Dis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]