HOME
*





Hardy–Ramanujan Theorem
In mathematics, the Hardy–Ramanujan theorem, proved by , states that the normal order of the number ω(''n'') of distinct prime factors of a number ''n'' is log(log(''n'')). Roughly speaking, this means that most numbers have about this number of distinct prime factors. Precise statement A more precise version states that for every real-valued function ''ψ''(''n'') that tends to infinity as ''n'' tends to infinity :, \omega(n)-\log\log n, <\psi(n)\sqrt or more traditionally :, \omega(n)-\log\log n, <^ for ''
almost all In mathematics, the term "almost all" means "all but a negligible amount". More precisely, if X is a set, "almost all elements of X" means "all elements of X but those in a negligible subset of X". The meaning of "negligible" depends on the mathema ...
'' (all but an infinitesimal proportion ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normal Order Of An Arithmetic Function
In number theory, a normal order of an arithmetic function is some simpler or better-understood function which "usually" takes the same or closely approximate values. Let ''f'' be a function on the natural numbers. We say that ''g'' is a normal order of ''f'' if for every ''ε'' > 0, the inequalities : (1-\varepsilon) g(n) \le f(n) \le (1+\varepsilon) g(n) hold for ''almost all'' ''n'': that is, if the proportion of ''n'' ≤ ''x'' for which this does not hold tends to 0 as ''x'' tends to infinity. It is conventional to assume that the approximating function ''g'' is continuous and monotone. Examples * The Hardy–Ramanujan theorem: the normal order of ω(''n''), the number of distinct prime factors of ''n'', is log(log(''n'')); * The normal order of Ω(''n''), the number of prime factors of ''n'' counted with multiplicity, is log(log(''n'')); * The normal order of log(''d''(''n'')), where ''d''(''n'') is the number of divisors of ''n'', is log(2)& ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prime Factor
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow method of checking the primality of a given number n, called trial division, tests whether n is a multiple of any integer between 2 and \sqrt. Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error, and the AKS primality test, which alwa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Almost All
In mathematics, the term "almost all" means "all but a negligible amount". More precisely, if X is a set, "almost all elements of X" means "all elements of X but those in a negligible subset of X". The meaning of "negligible" depends on the mathematical context; for instance, it can mean finite, countable, or null. In contrast, "almost no" means "a negligible amount"; that is, "almost no elements of X" means "a negligible amount of elements of X". Meanings in different areas of mathematics Prevalent meaning Throughout mathematics, "almost all" is sometimes used to mean "all (elements of an infinite set) but finitely many". This use occurs in philosophy as well. Similarly, "almost all" can mean "all (elements of an uncountable set) but countably many". Examples: * Almost all positive integers are greater than 1012. * Almost all prime numbers are odd (2 is the only exception). * Almost all polyhedra are irregular (as there are only nine exceptions: the five platonic solids ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pál Turán
Pál Turán (; 18 August 1910 – 26 September 1976) also known as Paul Turán, was a Hungarian mathematician who worked primarily in extremal combinatorics. He had a long collaboration with fellow Hungarian mathematician Paul Erdős, lasting 46 years and resulting in 28 joint papers. Life and education Turán was born into a Jewish family in Budapest on 18 August 1910.At the same period of time, Turán and Erdős were famous answerers in the journal '' KöMaL''. He received a teaching degree at the University of Budapest in 1933 and the PhD degree under Lipót Fejér in 1935 at Eötvös Loránd University. As a Jew, he fell victim to numerus clausus, and could not get a university job for several years. He was sent to labour service at various times from 1940-44. He is said to have been recognized and perhaps protected by a fascist guard, who, as a mathematics student, had admired Turán's work. Turán became associate professor at the University of Budapest in 1945 and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Turán Sieve
In number theory, the Turán sieve is a technique for estimating the size of "sifted sets" of positive integers which satisfy a set of conditions which are expressed by congruences. It was developed by Pál Turán in 1934. Description In terms of sieve theory the Turán sieve is of ''combinatorial type'': deriving from a rudimentary form of the inclusion–exclusion principle. The result gives an ''upper bound'' for the size of the sifted set. Let ''A'' be a set of positive integers ≤ ''x'' and let ''P'' be a set of primes. For each ''p'' in ''P'', let ''A''''p'' denote the set of elements of ''A'' divisible by ''p'' and extend this to let ''A''''d'' be the intersection of the ''A''''p'' for ''p'' dividing ''d'', when ''d'' is a product of distinct primes from ''P''. Further let ''A''1 denote ''A'' itself. Let ''z'' be a positive real number and ''P''(''z'') denote the product of the primes in ''P'' which are ≤ ''z''. The object of the sieve is to estimate :S(A,P,z) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Multiplicity (mathematics)
In mathematics, the multiplicity of a member of a multiset is the number of times it appears in the multiset. For example, the number of times a given polynomial has a root at a given point is the multiplicity of that root. The notion of multiplicity is important to be able to count correctly without specifying exceptions (for example, ''double roots'' counted twice). Hence the expression, "counted with multiplicity". If multiplicity is ignored, this may be emphasized by counting the number of ''distinct'' elements, as in "the number of distinct roots". However, whenever a set (as opposed to multiset) is formed, multiplicity is automatically ignored, without requiring use of the term "distinct". Multiplicity of a prime factor In prime factorization, the multiplicity of a prime factor is its p-adic valuation. For example, the prime factorization of the integer is : the multiplicity of the prime factor is , while the multiplicity of each of the prime factors and is . ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Erdős–Kac Theorem
In number theory, the Erdős–Kac theorem, named after Paul Erdős and Mark Kac, and also known as the fundamental theorem of probabilistic number theory, states that if ''ω''(''n'') is the number of distinct prime factors of ''n'', then, loosely speaking, the probability distribution of : \frac is the standard normal distribution. (\omega(n) is sequence A001221 in the OEIS.) This is an extension of the Hardy–Ramanujan theorem, which states that the normal order of ''ω''(''n'') is log log ''n'' with a typical error of size \sqrt. Precise statement For any fixed ''a'' < ''b'', :\lim_ \left ( \frac \cdot \#\left\ \right ) = \Phi(a,b) where \Phi(a,b) is the normal (or "Gaussian") distribution, defined as : \Phi(a,b)= \frac\int_a^b e^ \, dt. More generally, if ''f''(''n'') is a strongly

picture info

Normal Distribution
In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is : f(x) = \frac e^ The parameter \mu is the mean or expectation of the distribution (and also its median and mode), while the parameter \sigma is its standard deviation. The variance of the distribution is \sigma^2. A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate. Normal distributions are important in statistics and are often used in the natural and social sciences to represent real-valued random variables whose distributions are not known. Their importance is partly due to the central limit theorem. It states that, under some conditions, the average of many samples (observations) of a random variable with finite mean and variance is itself a random variable—whose distribution converges to a normal d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe was the first president and Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance, due to concerns about competing with the American Journal of Mathematics. The result was the '' Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influential i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theorems In Analytic Number Theory
In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In the mainstream of mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice, or of a less powerful theory, such as Peano arithmetic. A notable exception is Wiles's proof of Fermat's Last Theorem, which involves the Grothendieck universes whose existence requires the addition of a new axiom to the set theory. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]