HOME
*





Hypergraph Regularity Method
In mathematics, the hypergraph regularity method is a powerful tool in extremal graph theory that refers to the combined application of the hypergraph regularity lemma and the associated counting lemma. It is a generalization of the graph regularity method, which refers to the use of Szemerédi's regularity and counting lemmas. Very informally, the hypergraph regularity lemma decomposes any given k -uniform hypergraph into a random-like object with bounded parts (with an appropriate boundedness and randomness notions) that is usually easier to work with. On the other hand, the hypergraph counting lemma estimates the number of hypergraphs of a given isomorphism class in some collections of the random-like parts. This is an extension of Szemerédi's regularity lemma that partitions any given graph into bounded number parts such that edges between the parts behave almost randomly. Similarly, the hypergraph counting lemma is a generalization of the graph counting lemma that estimate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Extremal Graph Theory
Extremal graph theory is a branch of combinatorics, itself an area of mathematics, that lies at the intersection of extremal combinatorics and graph theory. In essence, extremal graph theory studies how global properties of a graph influence local substructure. Results in extremal graph theory deal with quantitative connections between various graph properties, both global (such as the number of vertices and edges) and local (such as the existence of specific subgraphs), and problems in extremal graph theory can often be formulated as optimization problems: how big or small a parameter of a graph can be, given some constraints that the graph has to satisfy? A graph that is an optimal solution to such an optimization problem is called an extremal graph, and extremal graphs are important objects of study in extremal graph theory. Extremal graph theory is closely related to fields such as Ramsey theory, spectral graph theory, computational complexity theory, and additive co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Szemerédi Regularity Lemma
Szemerédi's regularity lemma is one of the most powerful tools in extremal graph theory, particularly in the study of large dense graphs. It states that the vertices of every large enough graph can be partitioned into a bounded number of parts so that the edges between different parts behave almost randomly. According to the lemma, no matter how large a graph is, we can approximate it with the edge densities between a bounded number of parts. Between any two parts, the distribution of edges will be pseudorandom as per the edge density. These approximations provide essentially correct values for various properties of the graph, such as the number of embedded copies of a given subgraph or the number of edge deletions required to remove all copies of some subgraph. Statement To state Szemerédi's regularity lemma formally, we must formalize what the edge distribution between parts behaving 'almost randomly' really means. By 'almost random', we're referring to a notion called -regu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hypergraph
In mathematics, a hypergraph is a generalization of a graph in which an edge can join any number of vertices. In contrast, in an ordinary graph, an edge connects exactly two vertices. Formally, an undirected hypergraph H is a pair H = (X,E) where X is a set of elements called ''nodes'' or ''vertices'', and E is a set of non-empty subsets of X called '' hyperedges'' or ''edges''. Therefore, E is a subset of \mathcal(X) \setminus\, where \mathcal(X) is the power set of X. The size of the vertex set is called the ''order of the hypergraph'', and the size of edges set is the ''size of the hypergraph''. A directed hypergraph differs in that its hyperedges are not sets, but ordered pairs of subsets of X, with each pair's first and second entries constituting the tail and head of the hyperedge respectively. While graph edges connect only 2 nodes, hyperedges connect an arbitrary number of nodes. However, it is often desirable to study hypergraphs where all hyperedges have the same c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hypergraph Removal Lemma
In graph theory, the hypergraph removal lemma states that when a hypergraph contains few copies of a given sub-hypergraph, then all of the copies can be eliminated by removing a small number of hyperedges. It is a generalization of the graph removal lemma. The special case in which the graph is a tetrahedron is known as the tetrahedron removal lemma. It was first proved by Nagle, Rödl, Schacht and Skokan and, independently, by Gowers. The hypergraph removal lemma can be used to prove results such as Szemerédi's theorem and the multi-dimensional Szemerédi theorem. Statement The hypergraph removal lemma states that for any \varepsilon, r, m > 0, there exists \delta = \delta(\varepsilon, r, m) > 0 such that for any r-uniform hypergraph H with m vertices the following is true: if G is any n-vertex r-uniform hypergraph with at most \delta n^ subgraphs isomorphic to H, then it is possible to eliminate all copies of H from G by removing at most \varepsilon n^r hyperedges from G. An ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Szemerédi's Theorem
In arithmetic combinatorics, Szemerédi's theorem is a result concerning arithmetic progressions in subsets of the integers. In 1936, Erdős and Turán conjectured that every set of integers ''A'' with positive natural density contains a ''k''-term arithmetic progression for every ''k''. Endre Szemerédi proved the conjecture in 1975. Statement A subset ''A'' of the natural numbers is said to have positive upper density if :\limsup_\frac > 0. Szemerédi's theorem asserts that a subset of the natural numbers with positive upper density contains infinitely many arithmetic progressions of length ''k'' for all positive integers ''k''. An often-used equivalent finitary version of the theorem states that for every positive integer ''k'' and real number \delta \in (0, 1], there exists a positive integer :N = N(k,\delta) such that every subset of of size at least δ''N'' contains an arithmetic progression of length ''k''. Another formulation uses the function ''r''''k''(''N''), t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vojtěch Rödl
Vojtěch Rödl (born 1 April 1949) is a Czech American mathematician, Samuel Candler Dobbs Professor at Emory University. He is noted for his contributions mainly to combinatorics having authored hundreds of research papers. Academic Background Rödl obtained his PhD from the School of Mathematics and Physics at Charles University in 1976. His supervisor was Zdeněk Hedrlín. From 1973 to 1987 he lectured at the School of Nuclear and Physical Engineering at the Czech Technical University in Prague. He has held visiting positions in various institutions including McMaster University, University of Waterloo, Bell Laboratories, Microsoft, Charles University, Mathematical Institute of the Czech Academy of Science, Bielefeld University, as well as at Humboldt University in Berlin. He serves on the editorial board of several international journals. He has given lectures at many conferences, including plenary address in 2014 at the International Congress of Mathematicians ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mathias Schacht
Mathias Schacht (born 1977) is a German mathematician who specializes in graph theory.. Schacht earned a diploma in business mathematics in 1999 from the Technical University of Berlin. He did his graduate studies at Emory University, completing a PhD in 2004 under the supervision of Vojtěch Rödl. His dissertation, on hypergraph generalizations of the Szemerédi regularity lemma, won the 2006 Richard Rado Prize of the German Mathematical Society. He worked at the Humboldt University of Berlin as a postdoctoral researcher and acting professor from 2004 until 2009, when he moved to the University of Hamburg. He received his habilitation from Humboldt University in 2010, and has been Heisenberg Professor at the University of Hamburg from 2010 to 2015. In 2012, Schacht and Rödl won the George Pólya Prize of the Society for Industrial and Applied Mathematics Society for Industrial and Applied Mathematics (SIAM) is a professional society dedicated to applied mathematics, co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Yoshiharu Kohayakawa
Yoshiharu Kohayakawa (Japanese: 小早川美晴; born 1963) is a Japanese-Brazilian mathematician working on discrete mathematics and probability theory.Brazilian Academy of Sciences – Yoshiharu Kohayakawa
He is known for his work on Szemerédi's regularity lemma, which he extended to sparser graphs.


Biography

Kohayakawa was a student of at the

picture info

Terence Tao
Terence Chi-Shen Tao (; born 17 July 1975) is an Australian-American mathematician. He is a professor of mathematics at the University of California, Los Angeles (UCLA), where he holds the James and Carol Collins chair. His research includes topics in harmonic analysis, partial differential equations, algebraic combinatorics, arithmetic combinatorics, geometric combinatorics, probability theory, compressed sensing and analytic number theory. Tao was born to ethnic Chinese immigrant parents and raised in Adelaide. Tao won the Fields Medal in 2006 and won the Royal Medal and Breakthrough Prize in Mathematics in 2014. He is also a 2006 MacArthur Fellow. Tao has been the author or co-author of over three hundred research papers. He is widely regarded as one of the greatest living mathematicians and has been referred to as the "Mozart of mathematics". Life and career Family Tao's parents are first-generation immigrants from Hong Kong to Australia.''Wen Wei Po'', Page A4, 24 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of Combinatorial Theory
The ''Journal of Combinatorial Theory'', Series A and Series B, are mathematical journals specializing in combinatorics and related areas. They are published by Elsevier. ''Series A'' is concerned primarily with structures, designs, and applications of combinatorics. ''Series B'' is concerned primarily with graph and matroid theory. The two series are two of the leading journals in the field and are widely known as ''JCTA'' and ''JCTB''. The journal was founded in 1966 by Frank Harary and Gian-Carlo Rota.They are acknowledged on the journals' title pages and Web sites. SeEditorial board of JCTAEditorial board of JCTB
Originally there was only one journal, which was split into two parts in 1971 as the field grew rapidly. An electronic,

Timothy Gowers
Sir William Timothy Gowers, (; born 20 November 1963) is a British mathematician. He is Professeur titulaire of the Combinatorics chair at the Collège de France, and director of research at the University of Cambridge and Fellow of Trinity College, Cambridge. In 1998, he received the Fields Medal for research connecting the fields of functional analysis and combinatorics. Education Gowers attended King's College School, Cambridge, as a choirboy in the King's College choir, and then Eton College as a King's Scholar, where he was taught mathematics by Norman Routledge. In 1981, Gowers won a gold medal at the International Mathematical Olympiad with a perfect score. He completed his PhD, with a dissertation on ''Symmetric Structures in Banach Spaces'' at Trinity College, Cambridge in 1990, supervised by Béla Bollobás. Career and research After his PhD, Gowers was elected to a Junior Research Fellowship at Trinity College. From 1991 until his return to Cambridge in 1995 he w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pseudorandomness
A pseudorandom sequence of numbers is one that appears to be statistically random, despite having been produced by a completely deterministic and repeatable process. Background The generation of random numbers has many uses, such as for random sampling, Monte Carlo methods, board games, or gambling. In physics, however, most processes, such as gravitational acceleration, are deterministic, meaning that they always produce the same outcome from the same starting point. Some notable exceptions are radioactive decay and quantum measurement, which are both modeled as being truly random processes in the underlying physics. Since these processes are not practical sources of random numbers, people use pseudorandom numbers, which ideally have the unpredictability of a truly random sequence, despite being generated by a deterministic process. In many applications, the deterministic process is a computer algorithm called a pseudorandom number generator, which must first be provided wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]