Hilbert–Pólya Conjecture
In mathematics, the Hilbert–Pólya conjecture states that the non-trivial Zero of a function, zeros of the Riemann zeta function correspond to eigenvalues of a self-adjoint operator. It is a possible approach to the Riemann hypothesis, by means of spectral theory. History In a letter to Andrew Odlyzko, dated January 3, 1982, George Pólya said that while he was in Göttingen around 1912 to 1914 he was asked by Edmund Landau for a physical reason that the Riemann hypothesis should be true, and suggested that this would be the case if the imaginary parts ''t'' of the zeros : \tfrac12 + it of the Riemann zeta function corresponded to eigenvalues of a self-adjoint operator.. The earliest published statement of the conjecture seems to be in .. David Hilbert did not work in the central areas of analytic number theory, but his name has become known for the Hilbert–Pólya conjecture due to a story told by Ernst Hellinger, a student of Hilbert, to André Weil. Hellinger said that Hilbe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Spectrum (functional Analysis)
In mathematics, particularly in functional analysis, the spectrum of a bounded linear operator (or, more generally, an unbounded linear operator) is a generalisation of the set of eigenvalues of a matrix. Specifically, a complex number \lambda is said to be in the spectrum of a bounded linear operator T if T-\lambda I * either has ''no'' set-theoretic inverse; * or the set-theoretic inverse is either unbounded or defined on a non-dense subset. Here, I is the identity operator. By the closed graph theorem, \lambda is in the spectrum if and only if the bounded operator T - \lambda I: V\to V is non-bijective on V. The study of spectra and related properties is known as ''spectral theory'', which has numerous applications, most notably the mathematical formulation of quantum mechanics. The spectrum of an operator on a finite-dimensional vector space is precisely the set of eigenvalues. However an operator on an infinite-dimensional space may have additional elements in its s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hamiltonian (quantum Mechanics)
In quantum mechanics, the Hamiltonian of a system is an operator corresponding to the total energy of that system, including both kinetic energy and potential energy. Its spectrum, the system's ''energy spectrum'' or its set of ''energy eigenvalues'', is the set of possible outcomes obtainable from a measurement of the system's total energy. Due to its close relation to the energy spectrum and time-evolution of a system, it is of fundamental importance in most formulations of quantum theory. The Hamiltonian is named after William Rowan Hamilton, who developed a revolutionary reformulation of Newtonian mechanics, known as Hamiltonian mechanics, which was historically important to the development of quantum physics. Similar to vector notation, it is typically denoted by \hat, where the hat indicates that it is an operator. It can also be written as H or \check. Introduction The Hamiltonian of a system represents the total energy of the system; that is, the sum of the kine ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Eigenstate
In quantum physics, a quantum state is a mathematical entity that embodies the knowledge of a quantum system. Quantum mechanics specifies the construction, evolution, and measurement of a quantum state. The result is a prediction for the system represented by the state. Knowledge of the quantum state, and the rules for the system's evolution in time, exhausts all that can be known about a quantum system. Quantum states may be defined differently for different kinds of systems or problems. Two broad categories are * wave functions describing quantum systems using position or momentum variables and * the more abstract vector quantum states. Historical, educational, and application-focused problems typically feature wave functions; modern professional physics uses the abstract vector states. In both categories, quantum states divide into pure versus mixed states, or into coherent states and incoherent states. Categories with special properties include stationary states for time ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hermitian Matrix
In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the -th row and -th column is equal to the complex conjugate of the element in the -th row and -th column, for all indices and : A \text \quad \iff \quad a_ = \overline or in matrix form: A \text \quad \iff \quad A = \overline . Hermitian matrices can be understood as the complex extension of real symmetric matrices. If the conjugate transpose of a matrix A is denoted by A^\mathsf, then the Hermitian property can be written concisely as A \text \quad \iff \quad A = A^\mathsf Hermitian matrices are named after Charles Hermite, who demonstrated in 1855 that matrices of this form share a property with real symmetric matrices of always having real eigenvalues. Other, equivalent notations in common use are A^\mathsf = A^\dagger = A^\ast, although in quantum mechanics, A^\ast typically means the complex conjugate onl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Random Matrices
In probability theory and mathematical physics, a random matrix is a matrix-valued random variable—that is, a matrix in which some or all of its entries are sampled randomly from a probability distribution. Random matrix theory (RMT) is the study of properties of random matrices, often as they become large. RMT provides techniques like mean-field theory, diagrammatic methods, the cavity method, or the replica method to compute quantities like traces, spectral densities, or scalar products between eigenvectors. Many physical phenomena, such as the spectrum of nuclei of heavy atoms, the thermal conductivity of a lattice, or the emergence of quantum chaos, can be modeled mathematically as problems concerning large, random matrices. Applications Physics In nuclear physics, random matrices were introduced by Eugene Wigner to model the nuclei of heavy atoms. Wigner postulated that the spacings between the lines in the spectrum of a heavy atom nucleus should resemble the sp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Freeman Dyson
Freeman John Dyson (15 December 1923 – 28 February 2020) was a British-American theoretical physics, theoretical physicist and mathematician known for his works in quantum field theory, astrophysics, random matrix, random matrices, mathematical formulation of quantum mechanics, condensed matter physics, nuclear physics, and nuclear engineering, engineering. He was professor emeritus in the Institute for Advanced Study in Princeton, New Jersey, Princeton and a member of the board of sponsors of the ''Bulletin of the Atomic Scientists''. Dyson originated several concepts that bear his name, such as Dyson's transform, a fundamental technique in additive number theory, which he developed as part of his proof of Mann's theorem; the Dyson tree, a hypothetical genetic engineering, genetically engineered plant capable of growing in a comet; the Dyson series, a Perturbation theory (quantum mechanics), perturbative series where each term is represented by Feynman diagrams; the Dys ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Institute For Advanced Study
The Institute for Advanced Study (IAS) is an independent center for theoretical research and intellectual inquiry located in Princeton, New Jersey. It has served as the academic home of internationally preeminent scholars, including Albert Einstein, J. Robert Oppenheimer, Emmy Noether, Hermann Weyl, John von Neumann, Michael Walzer, Clifford Geertz and Kurt Gödel, many of whom had emigrated from Europe to the United States. It was founded in 1930 by American educator Abraham Flexner, together with philanthropists Louis Bamberger and Caroline Bamberger Fuld. Despite collaborative ties and neighboring geographic location, the institute, being independent, has "no formal links" with Princeton University. The institute does not charge tuition or fees. Flexner's guiding principle in founding the institute was the pursuit of knowledge for its own sake.Jogalekar. The faculty have no classes to teach. There are no degree programs or experimental facilities at the institute. Research ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Montgomery's Pair Correlation Conjecture
In mathematics, Montgomery's pair correlation conjecture is a conjecture made by that the pair correlation between pairs of zeros of the Riemann zeta function (normalized to have unit average spacing) is :1-\left(\frac\right)^, which, as Freeman Dyson pointed out to him, is the same as the pair correlation function of random Hermitian matrices. Conjecture ''Under the assumption that the Riemann hypothesis is true.'' Let \alpha\leq \beta be fixed, then the conjecture states : \lim_ \frac= \int\limits_\alpha^\beta 1-\left(\frac\right)^2 \mathrmu and where each \gamma, \gamma' is the imaginary part of the non-trivial zeros of Riemann zeta function, that is \tfrac+i\gamma. Explanation Informally, this means that the chance of finding a zero in a very short interval of length 2π''L''/log(''T'') at a distance 2π''u''/log(''T'') from a zero 1/2+''iT'' is about ''L'' times the expression above. (The factor 2π/log(''T'') is a normalization factor that can be thought of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hugh Montgomery (mathematician)
Hugh Lowell Montgomery (born 1944) is an American mathematician, working in the fields of analytic number theory and mathematical analysis. He is the namesake of Montgomery's pair correlation conjecture on the zeros of the Riemann zeta function, is known for his development of large sieve methods, and is the author of multiple books on number theory and analysis. He is a professor emeritus at the University of Michigan. Education and career Montgomery was born on August 26, 1944 in Muncie, Indiana. He was an undergraduate at the University of Illinois Urbana-Champaign. On graduating in 1966, he became a Marshall scholar at the University of Cambridge in England. There, he became a Fellow of Trinity College, Cambridge in 1969, and completed his Ph.D. in 1972. His dissertation, ''Topics in Multiplicative Number Theory'', was supervised by Harold Davenport. He became an assistant professor of mathematics at the University of Michigan in 1972. He was quickly promoted, to associ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Explicit Formulae (L-function)
In mathematics, the Closed-form expression, explicit formulae for L-functions are relations between sums over the complex number zeroes of an L-function and sums over Prime number, prime powers, introduced by for the Riemann zeta function. Such explicit formulae have been applied also to questions on bounding the discriminant of an algebraic number field, and the conductor of a number field. Riemann's explicit formula In his 1859 paper "On the Number of Primes Less Than a Given Magnitude" Riemann sketched an explicit formula (it was not fully proven until 1895 by Hans Carl Friedrich von Mangoldt, von Mangoldt, see below) for the normalized prime-counting function which is related to the prime-counting function by :\pi_0(x) = \frac \lim_ \left[\,\pi(x+h) + \pi(x-h)\,\right]\,, which takes the arithmetic mean of the limit from the left and the limit from the right at discontinuities. His formula was given in terms of the related function :f(x) = \pi_0(x) + \frac\,\pi_0(x^) + \f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Selberg Trace Formula
In mathematics, the Selberg trace formula, introduced by , is an expression for the character of the unitary representation of a Lie group on the space of square-integrable functions, where is a cofinite discrete group. The character is given by the trace of certain functions on . The simplest case is when is cocompact, when the representation breaks up into discrete summands. Here the trace formula is an extension of the Frobenius formula for the character of an induced representation of finite groups. When is the cocompact subgroup of the real numbers , the Selberg trace formula is essentially the Poisson summation formula. The case when is not compact is harder, because there is a continuous spectrum, described using Eisenstein series. Selberg worked out the non-compact case when is the group ; the extension to higher rank groups is the Arthur–Selberg trace formula. When is the fundamental group of a Riemann surface, the Selberg trace formula describes the s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |