Hall's Marriage Theorem
In mathematics, Hall's marriage theorem, proved by , is a theorem with two equivalent formulations. In each case, the theorem gives a necessity and sufficiency, necessary and sufficient condition for an object to exist: * The Combinatorics, combinatorial formulation answers whether a Finite set, finite collection of Set (mathematics), sets has a transversal (combinatorics), transversal—that is, whether an element can be chosen from each set without repetition. Hall's condition is that for any group of sets from the collection, the total unique elements they contain is at least as large as the number of sets in the group. * The Graph theory, graph theoretic formulation answers whether a finite bipartite graph has a perfect matching—that is, a way to match each vertex from one group uniquely to an adjacent vertex from the other group. Hall's condition is that any subset of vertices from one group has a neighbourhood (graph theory), neighbourhood of equal or greater size. Combinat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Halls Theorem Matching Graph Theory2
Halls is a plural of the word hall. Halls may also refer to: People * Walter Halls (1871–1953), British trade unionist and politician * Ethel May Halls (1882–1967), American actress * Julian Halls (born 1967), British field hockey player * Evelyn Halls (born 1972), Australian fencer * Roxana Halls (born 1974), English artist * Monty Halls (born 1976), British marine biologist and TV presenter * John Halls (born 1982), English footballer, mostly played for Stoke, Brentford and Aldershot, and model * Andy Halls (born 1992), English footballer, has played for Stockport, Macclesfield and Chester * Halls (footballer) (born 1999), Brazilian footballer * Henrique Halls (born 2002), Brazilian footballer Places * Halls, Georgia, an unincorporated community * Halls, Missouri, an unincorporated community * Halls, Tennessee, a town in West Tennessee ** Not to be confused with Halls Crossroads, Tennessee, a suburb of Knoxville sometimes colloquially referred to as "Halls" Business * ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Coset
In mathematics, specifically group theory, a subgroup of a group may be used to decompose the underlying set of into disjoint, equal-size subsets called cosets. There are ''left cosets'' and ''right cosets''. Cosets (both left and right) have the same number of elements (cardinality) as does . Furthermore, itself is both a left coset and a right coset. The number of left cosets of in is equal to the number of right cosets of in . This common value is called the index of in and is usually denoted by . Cosets are a basic tool in the study of groups; for example, they play a central role in Lagrange's theorem that states that for any finite group , the number of elements of every subgroup of divides the number of elements of . Cosets of a particular type of subgroup (a normal subgroup) can be used as the elements of another group called a quotient group or factor group. Cosets also appear in other areas of mathematics such as vector spaces and error-correcting code ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Subgroup
In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group (mathematics), group under a binary operation ∗, a subset of is called a subgroup of if also forms a group under the operation ∗. More precisely, is a subgroup of if the Restriction (mathematics), restriction of ∗ to is a group operation on . This is often denoted , read as " is a subgroup of ". The trivial subgroup of any group is the subgroup consisting of just the identity element. A proper subgroup of a group is a subgroup which is a subset, proper subset of (that is, ). This is often represented notationally by , read as " is a proper subgroup of ". Some authors also exclude the trivial group from being proper (that is, ). If is a subgroup of , then is sometimes called an overgroup of . The same definitions apply more generally when is an arbitrary se ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Index Of A Subgroup
In mathematics, specifically group theory, the index of a subgroup ''H'' in a group ''G'' is the number of left Coset, cosets of ''H'' in ''G'', or equivalently, the number of right cosets of ''H'' in ''G''. The index is denoted , G:H, or [G:H] or (G:H). Because ''G'' is the disjoint union of the left cosets and because each left coset has the same cardinality, size as ''H'', the index is related to the order (group theory), orders of the two groups by the formula :, G, = , G:H, , H, (interpret the quantities as cardinal numbers if some of them are infinite). Thus the index , G:H, measures the "relative sizes" of ''G'' and ''H''. For example, let G = \Z be the group of integers under addition, and let H = 2\Z be the subgroup consisting of the Parity (mathematics), even integers. Then 2\Z has two cosets in \Z, namely the set of even integers and the set of odd integers, so the index , \Z:2\Z, is 2. More generally, , \Z:n\Z, = n for any positive integer ''n''. When ''G'' i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Group (mathematics)
In mathematics, a group is a Set (mathematics), set with an Binary operation, operation that combines any two elements of the set to produce a third element within the same set and the following conditions must hold: the operation is Associative property, associative, it has an identity element, and every element of the set has an inverse element. For example, the integers with the addition, addition operation form a group. The concept of a group was elaborated for handling, in a unified way, many mathematical structures such as numbers, geometric shapes and polynomial roots. Because the concept of groups is ubiquitous in numerous areas both within and outside mathematics, some authors consider it as a central organizing principle of contemporary mathematics. In geometry, groups arise naturally in the study of symmetries and geometric transformations: The symmetries of an object form a group, called the symmetry group of the object, and the transformations of a given type form a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Regular Graph
In graph theory, a regular graph is a Graph (discrete mathematics), graph where each Vertex (graph theory), vertex has the same number of neighbors; i.e. every vertex has the same Degree (graph theory), degree or valency. A regular directed graph must also satisfy the stronger condition that the indegree and outdegree of each internal vertex are equal to each other. A regular graph with vertices of degree is called a graph or regular graph of degree . Special cases Regular graphs of degree at most 2 are easy to classify: a graph consists of disconnected vertices, a graph consists of disconnected edges, and a graph consists of a disjoint union of graphs, disjoint union of cycle (graph theory), cycles and infinite chains. A graph is known as a cubic graph. A strongly regular graph is a regular graph where every adjacent pair of vertices has the same number of neighbors in common, and every non-adjacent pair of vertices has the same number of neighbors in common. The smal ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Playing Card
A playing card is a piece of specially prepared card stock, heavy paper, thin cardboard, plastic-coated paper, cotton-paper blend, or thin plastic that is marked with distinguishing motifs. Often the front (face) and back of each card has a finish to make handling easier. They are most commonly used for playing card games, and are also used in magic tricks, cardistry, card throwing, and card houses; cards may also be collected. Playing cards are typically palm-sized for convenient handling, and usually are sold together in a set as a deck of cards or pack of cards. The most common type of playing card in the West is the French-suited, standard 52-card pack, of which the most widespread design is the English pattern, followed by the Belgian-Genoese pattern. However, many countries use other, traditional types of playing card, including those that are German, Italian, Spanish and Swiss-suited. Tarot cards (also known locally as ''Tarocks'' or ''tarocchi'') are an ol ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sperner's Lemma
In mathematics, Sperner's lemma is a combinatorial result on colorings of triangulations, analogous to the Brouwer fixed point theorem, which is equivalent to it. It states that every Sperner coloring (described below) of a triangulation of an simplex contains a cell whose vertices all have different colors. The initial result of this kind was proved by Emanuel Sperner, in relation with proofs of invariance of domain. Sperner colorings have been used for effective computation of fixed points and in root-finding algorithms, and are applied in fair division (cake cutting) algorithms. According to the Soviet ''Mathematical Encyclopaedia'' (ed. I.M. Vinogradov), a related 1929 theorem (of Knaster, Borsuk and Mazurkiewicz) had also become known as the ''Sperner lemma'' – this point is discussed in the English translation (ed. M. Hazewinkel). It is now commonly known as the Knaster–Kuratowski–Mazurkiewicz lemma. Statement One-dimensional case In one dimension, Spern ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Degree (graph Theory)
In graph theory, the degree (or valency) of a vertex of a graph is the number of edges that are incident to the vertex; in a multigraph, a loop contributes 2 to a vertex's degree, for the two ends of the edge. The degree of a vertex v is denoted \deg(v) or \deg v. The maximum degree of a graph G is denoted by \Delta(G), and is the maximum of G's vertices' degrees. The minimum degree of a graph is denoted by \delta(G), and is the minimum of G's vertices' degrees. In the multigraph shown on the right, the maximum degree is 5 and the minimum degree is 0. In a regular graph, every vertex has the same degree, and so we can speak of ''the'' degree of the graph. A complete graph (denoted K_n, where n is the number of vertices in the graph) is a special kind of regular graph where all vertices have the maximum possible degree, n-1. In a signed graph, the number of positive edges connected to the vertex v is called positive deg(v) and the number of connected negative edges is enti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Contrapositive
In logic and mathematics, contraposition, or ''transposition'', refers to the inference of going from a Conditional sentence, conditional statement into its logically equivalent contrapositive, and an associated proof method known as . The contrapositive of a statement has its Antecedent (logic), antecedent and consequent Negation, negated and Conversion (logic), swapped. Material conditional, Conditional statement P \rightarrow Q. In Logical connective, formulas: the contrapositive of P \rightarrow Q is \neg Q \rightarrow \neg P . If ''P'', Then ''Q''. — If not ''Q'', Then not ''P''. "If ''it is raining,'' then ''I wear my coat''." — "If ''I don't wear my coat,'' then ''it isn't raining''." The law of contraposition says that a conditional statement is true if, and only if, its contrapositive is true. Contraposition ( \neg Q \rightarrow \neg P ) can be compared with three other operations: ;Inverse (logic), Inversion (the inverse), \neg P \rightarrow \neg Q:"If ''it is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
If And Only If
In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its pre-existing meaning. For example, ''P if and only if Q'' means that ''P'' is true whenever ''Q'' is true, and the only case in which ''P'' is true is if ''Q'' is also true, whereas in the case of ''P if Q ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |