Hales–Jewett Theorem
In mathematics, the Hales–Jewett theorem is a fundamental combinatorial result of Ramsey theory named after Alfred W. Hales and Robert I. Jewett, concerning the degree to which high-dimensional objects must necessarily exhibit some combinatorial structure. An informal geometric statement of the theorem is that for any positive integers ''n'' and ''c'' there is a number ''H'' such that if the cells of a ''H''-dimensional ''n''×''n''×''n''×...×''n'' cube are colored with ''c'' colors, there must be one row, column, or certain diagonal (more details below) of length ''n'' all of whose cells are the same color. In other words, assuming ''n'' and ''c'' are fixed, the higher-dimensional, multi-player, ''n''-in-a-row generalization of a game of tic-tac-toe with ''c'' players cannot end in a draw, no matter how large ''n'' is, no matter how many people ''c'' are playing, and no matter which player plays each turn, provided only that it is played on a board of sufficiently high dimens ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ackermann Function
In computability theory, the Ackermann function, named after Wilhelm Ackermann, is one of the simplest and earliest-discovered examples of a total function, total computable function that is not Primitive recursive function, primitive recursive. All primitive recursive functions are total and computable, but the Ackermann function illustrates that not all total computable functions are primitive recursive. After Ackermann's publication of his function (which had three non-negative integer arguments), many authors modified it to suit various purposes, so that today "the Ackermann function" may refer to any of numerous variants of the original function. One common version is the two-argument Ackermann–Péter function developed by Rózsa Péter and Raphael Robinson. This function is defined from the recurrence relation \operatorname(m+1, n+1) = \operatorname(m, \operatorname(m+1, n)) with appropriate Base case (recursion), base cases. Its value grows very rapidly; for example, \o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Theorems In Discrete Mathematics
In mathematics and formal logic, a theorem is a statement that has been proven, or can be proven. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In mainstream mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice (ZFC), or of a less powerful theory, such as Peano arithmetic. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and ''corollary'' for less important theorems. In mathematical logic, the concepts of theorems and proofs have been formalized in order to allow mathematical reasonin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graham–Rothschild Theorem
In mathematics, the Graham–Rothschild theorem is a theorem that applies Ramsey theory to combinatorics on words and combinatorial cubes. It is named after Ronald Graham and Bruce Lee Rothschild, who published its proof in 1971. Through the work of Graham, Rothschild, and in 1972, it became part of the foundations of structural Ramsey theory. A special case of the Graham–Rothschild theorem motivates the definition of Graham's number, a number that was popularized by Martin Gardner in ''Scientific American'' and listed in the ''Guinness Book of World Records'' as the largest number ever appearing in a mathematical proof. Background The theorem involves sets of strings, all having the same length n, over a finite alphabet, together with a group acting on the alphabet. A combinatorial cube is a subset of strings determined by constraining some positions of the string to contain a fixed letter of the alphabet, and by constraining other pairs of positions to be equal to each othe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Corners Theorem
In arithmetic combinatorics, the corners theorem states that for every \varepsilon>0, for large enough N, any set of at least \varepsilon N^2 points in the N\times N grid \^2 contains a corner, i.e., a triple of points of the form \ with h\ne 0. It was first proved by Miklós Ajtai and Endre Szemerédi in 1974 using Szemerédi's theorem.. In 2003, József Solymosi gave a short proof using the triangle removal lemma. Statement Define a corner to be a subset of \mathbb^2 of the form \, where x,y,h\in \mathbb and h\ne 0. For every \varepsilon>0, there exists a positive integer N(\varepsilon) such that for any N\ge N(\varepsilon), any subset A\subseteq\^2 with size at least \varepsilon N^2 contains a corner. The condition h\ne 0 can be relaxed to h>0 by showing that if A is dense, then it has some dense subset that is centrally symmetric. Proof overview What follows is a sketch of Solymosi's argument. Suppose A\subset\^2 is corner-free. Construct an auxiliary tripartite graph G with ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Annals Of Mathematics
The ''Annals of Mathematics'' is a mathematical journal published every two months by Princeton University and the Institute for Advanced Study. History The journal was established as ''The Analyst'' in 1874 and with Joel E. Hendricks as the founding editor-in-chief. It was "intended to afford a medium for the presentation and analysis of any and all questions of interest or importance in pure and applied Mathematics, embracing especially all new and interesting discoveries in theoretical and practical astronomy, mechanical philosophy, and engineering". It was published in Des Moines, Iowa, and was the earliest American mathematics journal to be published continuously for more than a year or two. This incarnation of the journal ceased publication after its tenth year, in 1883, giving as an explanation Hendricks' declining health, but Hendricks made arrangements to have it taken over by new management, and it was continued from March 1884 as the ''Annals of Mathematics''. T ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Polymath Project
The Polymath Project is a collaboration among mathematicians to solve important and difficult mathematical problems by coordinating many mathematicians to communicate with each other on finding the best route to the solution. The project began in January 2009 on Timothy Gowers's blog when he posted a problem and asked his readers to post partial ideas and partial progress toward a solution. This experiment resulted in a new answer to a difficult problem, and since then the Polymath Project has grown to describe a particular crowdsourcing process of using an online collaboration to solve any math problem. Origin In January 2009, Gowers chose to start a social experiment on his blog by choosing an important unsolved mathematical problem and issuing an invitation for other people to help solve it collaboratively in the comments section of his blog. Along with the math problem itself, Gowers asked a question which was included in the title of his blog post, "is massively collaborative ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Journal D'Analyse Mathématique
The ''Journal d'Analyse Mathématique'' is a triannual peer-reviewed scientific journal published by Springer Science+Business Media on behalf of Magnes Press (Hebrew University of Jerusalem). It was established in 1951 by Binyamin Amirà. The journal covers research in mathematics, especially classical analysis and related areas such as complex function theory, ergodic theory, functional analysis, harmonic analysis, partial differential equations, and quasiconformal mapping. Abstracting and indexing The journal is abstracted and indexed in *MathSciNet *Science Citation Index Expanded *Scopus * ZbMATH Open According to the ''Journal Citation Reports'', the journal has a 2022 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a type of journal ranking. Journals with higher impact factor values are considered more prestigious or important within their field. The Impact Factor of a journa ... of 1.0. References External links *{ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ergodic Theory
Ergodic theory is a branch of mathematics that studies statistical properties of deterministic dynamical systems; it is the study of ergodicity. In this context, "statistical properties" refers to properties which are expressed through the behavior of time averages of various functions along trajectories of dynamical systems. The notion of deterministic dynamical systems assumes that the equations determining the dynamics do not contain any random perturbations, noise, etc. Thus, the statistics with which we are concerned are properties of the dynamics. Ergodic theory, like probability theory, is based on general notions of measure theory. Its initial development was motivated by problems of statistical physics. A central concern of ergodic theory is the behavior of a dynamical system when it is allowed to run for a long time. The first result in this direction is the Poincaré recurrence theorem, which claims that almost all points in any subset of the phase space eventua ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Szemerédi's Theorem
In arithmetic combinatorics, Szemerédi's theorem is a result concerning arithmetic progressions in subsets of the integers. In 1936, Erdős and Turán conjectured that every set of integers ''A'' with positive natural density contains a ''k''-term arithmetic progression for every ''k''. Endre Szemerédi proved the conjecture in 1975. Statement A subset ''A'' of the natural numbers is said to have positive upper density if :\limsup_\frac > 0. Szemerédi's theorem asserts that a subset of the natural numbers with positive upper density contains an arithmetic progression of length ''k'' for all positive integers ''k''. An often-used equivalent finitary version of the theorem states that for every positive integer ''k'' and real number \delta \in (0, 1], there exists a positive integer :N = N(k,\delta) such that every subset of of size at least \delta N contains an arithmetic progression of length ''k''. Another formulation uses the function ''r''''k''(''N''), the size of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Van Der Waerden's Theorem
Van der Waerden's theorem is a theorem in the branch of mathematics called Ramsey theory. Van der Waerden's theorem states that for any given positive integers ''r'' and ''k'', there is some number ''N'' such that if the integers are colored, each with one of ''r'' different colors, then there are at least ''k'' integers in arithmetic progression whose elements are of the same color. The least such ''N'' is the Van der Waerden number ''W''(''r'', ''k''), named after the Dutch mathematician B. L. van der Waerden. This was conjectured by Pierre Joseph Henry Baudet in 1921. Waerden heard of it in 1926 and published his proof in 1927, titled ''Beweis einer Baudetschen Vermutung roof of Baudet's conjecture'. Example For example, when ''r'' = 2, you have two colors, say and . ''W''(2, 3) is bigger than 8, because you can color the integers from like this: and no three integers of the same color form an arithmetic progression. But you can't add a ninth integer to the end w ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Decimal
The decimal numeral system (also called the base-ten positional numeral system and denary or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers (''decimal fractions'') of the Hindu–Arabic numeral system. The way of denoting numbers in the decimal system is often referred to as ''decimal notation''. A decimal numeral (also often just ''decimal'' or, less correctly, ''decimal number''), refers generally to the notation of a number in the decimal numeral system. Decimals may sometimes be identified by a decimal separator (usually "." or "," as in or ). ''Decimal'' may also refer specifically to the digits after the decimal separator, such as in " is the approximation of to ''two decimals''". Zero-digits after a decimal separator serve the purpose of signifying the precision of a value. The numbers that may be represented in the decimal system are the decimal fractions. That is, fractions of the form , w ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |