GPS
The Global Positioning System (GPS) is a satellite-based hyperbolic navigation system owned by the United States Space Force and operated by Mission Delta 31. It is one of the global navigation satellite systems (GNSS) that provide geolocation and time information to a GPS receiver anywhere on or near the Earth where there is an unobstructed line of sight to four or more GPS satellites. It does not require the user to transmit any data, and operates independently of any telephone or Internet reception, though these technologies can enhance the usefulness of the GPS positioning information. It provides critical positioning capabilities to military, civil, and commercial users around the world. Although the United States government created, controls, and maintains the GPS system, it is freely accessible to anyone with a GPS receiver. Overview The GPS project was started by the U.S. Department of Defense in 1973. The first prototype spacecraft was launched in 1978 and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
GPS24goldenSMALL
The Global Positioning System (GPS) is a Radionavigation-satellite service, satellite-based hyperbolic navigation system owned by the United States Space Force and operated by Mission Delta 31. It is one of the satellite navigation, global navigation satellite systems (GNSS) that provide geolocation and Time transfer, time information to a Satellite navigation device, GPS receiver anywhere on or near the Earth where there is an unobstructed line of sight to four or more GPS satellites. It does not require the user to transmit any data, and operates independently of any telephone or Internet reception, though these technologies can enhance the usefulness of the GPS positioning information. It provides critical positioning capabilities to military, civil, and commercial users around the world. Although the United States government created, controls, and maintains the GPS system, it is freely accessible to anyone with a GPS receiver. Overview The GPS project was started by th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
GPS Block III
GPS Block III (previously Block IIIA) consists of the first ten GPS III satellites, which are used to keep the Navstar Global Positioning System operational. Lockheed Martin designed, developed and manufactured the GPS III Non-Flight Satellite Testbed (GNST) and all ten Block III satellites. The first satellite in the series was launched in December 2018. History The United States' Global Positioning System (GPS) reached Full Operational Capability on 17 July 1995, completing its original design goals. Advances in technology and new demands on the existing system led to the effort to modernize the GPS system. In 2000, the U.S. Congress authorized the effort, referred to as GPS III. The project involves new ground stations and new satellites, with additional navigation signals for both civilian and military users, and aims to improve the accuracy and availability for all users. Raytheon was awarded the Next Generation GPS Operational Control System (OCX) contract on 25 Febr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Differential GPS
Differential Global Positioning Systems (DGPSs) supplement and enhance the positional data available from global navigation satellite systems (GNSSs). A DGPS can increase accuracy of positional data by about a thousandfold, from approximately to . DGPSs consist of networks of fixed position, ground-based reference stations. Each reference station calculates the difference between its highly accurate known position and its less accurate satellite-derived position. The stations broadcast this data locally—typically using ground-based transmitters of shorter range. Non-fixed (mobile) receivers use it to correct their position by the same amount, thereby improving their accuracy. The United States Coast Guard (USCG) previously ran DGPS in the United States on longwave radio frequencies between and near major waterways and harbors. It was discontinued in March 2022. The USCG's DGPS was known as NDGPS (Nationwide DGPS) and was jointly administered by the Coast Guard and the United ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Selective Availability
The error analysis for the Global Positioning System is important for understanding how GPS works, and for knowing what magnitude of error should be expected. The GPS makes corrections for receiver clock errors and other effects but there are still residual errors which are not corrected. GPS receiver position is computed based on data received from the satellites. Errors depend on geometric dilution of precision and the sources listed in the table below. Overview User equivalent range errors (UERE) are shown in the table. There is also a numerical error with an estimated value, \ \sigma_ , of about . The standard deviations, \ \sigma_R, for the coarse/acquisition (C/A) and precise codes are also shown in the table. These standard deviations are computed by taking the square root of the sum of the squares of the individual components (i.e., RSS for root sum squares). To get the standard deviation of receiver position estimate, these range errors must be multiplied by the app ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
GPS Navigation Device
A satellite navigation (satnav) device or GPS device is a device that uses satellites of the Global Positioning System (GPS) or similar global navigation satellite systems (GNSS). A satnav device can determine the user's geographic coordinates and may display the geographical position on a map and offer routing directions (as in turn-by-turn navigation). , four GNSS systems are operational: the original United States' GPS, the European Union's Galileo, Russia's GLONASS, and China's BeiDou Navigation Satellite System. The Indian Regional Navigation Satellite System (IRNSS) will follow and Japan's Quasi-Zenith Satellite System ( QZSS) scheduled for 2023 will augment the accuracy of a number of GNSS. A satellite navigation device can retrieve location and time information from one or more GNSS systems in all weather conditions, anywhere on or near the Earth's surface. Satnav reception requires an unobstructed line of sight to four or more GNSS satellites, and is subject t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Satellite Navigation
A satellite navigation or satnav system is a system that uses satellites to provide autonomous geopositioning. A satellite navigation system with global coverage is termed global navigation satellite system (GNSS). , four global systems are operational: the United States's Global Positioning System (GPS), Russia's Global Navigation Satellite System (GLONASS), China's BeiDou Navigation Satellite System (BDS), and the European Union, European Union's Galileo (satellite navigation), Galileo. Two regional systems are operational: India's Indian Regional Navigation Satellite System, NavIC and Japan's Quasi-Zenith Satellite System, QZSS. ''Satellite-based augmentation systems'' (SBAS), designed to enhance the accuracy of GNSS, include Japan's Quasi-Zenith Satellite System (QZSS), India's GAGAN and the European EGNOS, all of them based on GPS. Previous iterations of the BeiDou navigation system and the present Indian Regional Navigation Satellite System (IRNSS), operationally known as ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bradford Parkinson
Bradford Parkinson (born February 16, 1935) is an American engineer and inventor, retired United States Air Force Colonel and Emeritus Professor at Stanford University. He is best known as the lead architect, advocate and developer, with early contributions from Ivan Getting and Roger Easton, of the Air Force NAVSTAR program, better known as Global Positioning System. He was also the co-principal investigator (co-PI) and program manager on Gravity Probe B, which tested gravitomagnetism and was the first direct mechanical test of Einstein’s General Relativity. He has received numerous awards and honors for GPS and contributions to engineering and invention, including the Charles Stark Draper Prize, National Inventors Hall of Fame, and IEEE Medal of Honor, among others. In 2019, Bradford Parkinson shared the Queen Elizabeth Prize for Engineering with three other GPS pioneers ( James Spilker, Hugo Freuhauf, and Richard Schwartz). Education For his secondary education, Parkin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Automotive Navigation System
An automotive navigation system is part of the automobile controls or a third party add-on used to find direction in an automobile. It typically uses a satellite navigation device to get its position data which is then correlated to a position on a road. When directions are needed routing can be calculated. On the fly traffic information (road closures, congestion) can be used to adjust the route. Dead reckoning using distance data from sensors attached to the Powertrain, drivetrain, an accelerometer, a Inertial guidance system#Vibrating gyros, gyroscope, and a magnetometer can be used for greater reliability, as GNSS signal loss and/or Multipath propagation, multipath can occur due to urban canyons or tunnels. Mathematically, automotive navigation is based on the shortest path problem, within graph theory, which examines how to identify the path that best meets some criteria (shortest, cheapest, fastest, etc.) between two points in a large network. Automotive navigation systems ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Time Transfer
Time and frequency transfer is a scheme where multiple sites share a precise reference time or frequency. The technique is commonly used for creating and distributing standard time scales such as International Atomic Time (TAI). Time transfer solves problems such as astronomical observatories correlating observed flashes or other phenomena with each other, as well as cell phone towers coordinating handoffs as a phone moves from one cell to another. Multiple techniques have been developed, often transferring reference clock synchronization from one point to another, often over long distances. Accuracy approaching one nanosecond worldwide is economically practical for many applications. Radio-based navigation systems are frequently used as time transfer systems. In some cases, multiple measurements are made over a period of time, and exact time synchronization is determined retrospectively. In particular, time synchronization has been accomplished by using pairs of radio tel ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hyperbolic Navigation
Hyperbolic navigation is a class of radio navigation systems in which a navigation receiver instrument is used to determine location based on the difference in timing of radio waves received from radio navigation beacon transmitters. Such systems rely on the ability of two widely separated stations to broadcast a signal that is highly correlated in time. Typical systems broadcast either short pulses at the same time, or continual signals that are identical in phase. A receiver located at the midpoint between the two stations will receive the signals at the same time or have identical phase, but at any other location the signal from the closer station will be received first or have a different phase. Determining the location of a receiver requires that the two synchronized stations be tuned in at the same time so the signals can be compared. This reveals a ''difference'' in time, corresponding to a relative distance closer to one station or the other. Plotting all the locations ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Geolocation
Geopositioning is the process of determining or estimating the geographic position of an object or a person. Geopositioning yields a set of Geographic coordinate system, geographic coordinates (such as latitude and longitude) in a given map datum. Geographic positions may also be expressed indirectly, as a distance in linear referencing or as a bearing and range from a known landmark. In turn, positions can determine a meaningful location, such as a street address. Geoposition is sometimes referred to as ''geolocation'', and the process of geopositioning may also be described as ''geo-localization''. Specific instances include: * animal geotracking, the process of inferring the location of animals over time; * positioning system, the mechanisms for the determination of geographic positions in general; * internet geolocation, geolocating a device connected to the internet; * and mobile phone tracking. Geofencing ''Geofencing'' involves creating a virtual geographic boundary (a g ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |