HOME



picture info

Gauss's Constant
In mathematics, the lemniscate constant is a transcendental mathematical constant that is the ratio of the perimeter of Bernoulli's lemniscate to its diameter, analogous to the definition of for the circle. Equivalently, the perimeter of the lemniscate (x^2+y^2)^2=x^2-y^2 is . The lemniscate constant is closely related to the lemniscate elliptic functions and approximately equal to 2.62205755. It also appears in evaluation of the gamma and beta function at certain rational values. The symbol is a cursive variant of known as variant pi represented in Unicode by the character . Sometimes the quantities or are referred to as ''the'' lemniscate constant. History Gauss's constant, denoted by ''G'', is equal to and named after Carl Friedrich Gauss, who calculated it via the arithmetic–geometric mean as 1/M\bigl(1,\sqrt\bigr). By 1799, Gauss had two proofs of the theorem that M\bigl(1,\sqrt2\bigr)=\pi/\varpi where \varpi is the lemniscate constant. John Todd named tw ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lemniscate Of Bernoulli
In geometry, the lemniscate of Bernoulli is a plane curve defined from two given points and , known as foci, at distance from each other as the locus of points so that . The curve has a shape similar to the numeral 8 and to the ∞ symbol. Its name is from , which is Latin for "decorated with hanging ribbons". It is a special case of the Cassini oval and is a rational algebraic curve of degree 4. This lemniscate was first described in 1694 by Jakob Bernoulli as a modification of an ellipse, which is the locus of points for which the sum of the distances to each of two fixed ''focal points'' is a constant. A Cassini oval, by contrast, is the locus of points for which the ''product'' of these distances is constant. In the case where the curve passes through the point midway between the foci, the oval is a lemniscate of Bernoulli. This curve can be obtained as the inverse transform of a hyperbola, with the inversion circle centered at the center of the hyperbola (bisect ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Gregory Chudnovsky
David Volfovich Chudnovsky (born January 22, 1947) and Gregory Volfovich Chudnovsky (born April 17, 1952) are American mathematicians and engineers known for their world-record mathematical calculations and developing the Chudnovsky algorithm used to calculate the digits of with extreme precision. Both were born in Kiev, Ukrainian SSR, Soviet Union (now Kyiv, Ukraine). Careers in mathematics As a child, Gregory Chudnovsky was given a copy of ''What Is Mathematics?'' by his father (Volf Grigorovich Chudnovski, a Soviet-Ukrainian professor of technical sciences) and decided that he wanted to be a mathematician. As a high schooler, he solved Hilbert's tenth problem, shortly after Yuri Matiyasevich had solved it. He received a mathematics degree from Kyiv State University in 1974 and a PhD the following year from the Institute of Mathematics, National Academy of Sciences of Ukraine. In part to avoid religious persecution and in part to seek better medical care for Gregory, who h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe became the first president while Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance over concerns about competing with the '' American Journal of Mathematics''. The result was the ''Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influentia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press was the university press of the University of Cambridge. Granted a letters patent by King Henry VIII in 1534, it was the oldest university press in the world. Cambridge University Press merged with Cambridge Assessment to form Cambridge University Press and Assessment under Queen Elizabeth II's approval in August 2021. With a global sales presence, publishing hubs, and offices in more than 40 countries, it published over 50,000 titles by authors from over 100 countries. Its publications include more than 420 academic journals, monographs, reference works, school and university textbooks, and English language teaching and learning publications. It also published Bibles, runs a bookshop in Cambridge, sells through Amazon, and has a conference venues business in Cambridge at the Pitt Building and the Sir Geoffrey Cass Sports and Social Centre. It also served as the King's Printer. Cambridge University Press, as part of the University of Cambridge, was a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Leibniz Formula For π
In mathematics, the Leibniz formula for , named after Gottfried Wilhelm Leibniz, states that \frac = 1-\frac+\frac-\frac+\frac-\cdots = \sum_^ \frac, an alternating series. It is sometimes called the Madhava–Leibniz series as it was first discovered by the Indian mathematician Madhava of Sangamagrama or his followers in the 14th–15th century (see Madhava series), and was later independently rediscovered by James Gregory in 1671 and Leibniz in 1673. The Taylor series for the inverse tangent function, often called '' Gregory's series'', is \arctan x = x - \frac + \frac - \frac + \cdots = \sum_^\infty \frac. The Leibniz formula is the special case \arctan 1 = \tfrac14\pi. It also is the Dirichlet -series of the non-principal Dirichlet character of modulus 4 evaluated at s=1, and therefore the value of the Dirichlet beta function. Proofs Proof 1 \begin \frac &= \arctan(1) \\ &= \int_0^1 \frac 1 \, dx \\ pt& = \int_0^1\left(\sum_^n (-1)^k x^+\frac\right) \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dirichlet Beta Function
In mathematics, the Dirichlet beta function (also known as the Catalan beta function) is a special function, closely related to the Riemann zeta function. It is a particular Dirichlet L-function, the L-function for the alternating character of period four. Definition The Dirichlet beta function is defined as :\beta(s) = \sum_^\infty \frac , or, equivalently, :\beta(s) = \frac\int_0^\frac\,dx. In each case, it is assumed that Re(''s'') > 0. Alternatively, the following definition, in terms of the Hurwitz zeta function, is valid in the whole complex ''s''-plane: :\beta(s) = 4^ \left( \zeta\left(s,\right)-\zeta\left( s, \right) \right). Another equivalent definition, in terms of the Lerch transcendent, is: :\beta(s) = 2^ \Phi\left(-1,s,\right), which is once again valid for all complex values of ''s''. The Dirichlet beta function can also be written in terms of the polylogarithm function: :\beta(s) = \frac \left(\text_s(-i)-\text_s(i)\right). Also the series r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Square Root Of 2
The square root of 2 (approximately 1.4142) is the positive real number that, when multiplied by itself or squared, equals the number 2. It may be written as \sqrt or 2^. It is an algebraic number, and therefore not a transcendental number. Technically, it should be called the ''principal'' square root of 2, to distinguish it from the negative number with the same property. Geometrically, the square root of 2 is the length of a diagonal across a Unit square, square with sides of one unit of length; this follows from the Pythagorean theorem. It was probably the first number known to be irrational number, irrational. The fraction (≈ 1.4142857) is sometimes used as a good Diophantine approximation, rational approximation with a reasonably small denominator. Sequence in the On-Line Encyclopedia of Integer Sequences consists of the digits in the decimal expansion of the square root of 2, here truncated to 60 decimal places: : History The Babylonian clay tablet YBC 7289 (–1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Multiplicative Inverse
In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when Multiplication, multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a rational number, fraction ''a''/''b'' is ''b''/''a''. For the multiplicative inverse of a real number, divide 1 by the number. For example, the reciprocal of 5 is one fifth (1/5 or 0.2), and the reciprocal of 0.25 is 1 divided by 0.25, or 4. The reciprocal function, the Function (mathematics), function ''f''(''x'') that maps ''x'' to 1/''x'', is one of the simplest examples of a function which is its own inverse (an Involution (mathematics), involution). Multiplying by a number is the same as Division (mathematics), dividing by its reciprocal and vice versa. For example, multiplication by 4/5 (or 0.8) will give the same result as division by 5/4 (or 1.25). Therefore, multiplication by a number followed by multiplication by its reciprocal yie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann Zeta Function
The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter (zeta), is a mathematical function of a complex variable defined as \zeta(s) = \sum_^\infty \frac = \frac + \frac + \frac + \cdots for and its analytic continuation elsewhere. The Riemann zeta function plays a pivotal role in analytic number theory and has applications in physics, probability theory, and applied statistics. Leonhard Euler first introduced and studied the function over the reals in the first half of the eighteenth century. Bernhard Riemann's 1859 article "On the Number of Primes Less Than a Given Magnitude" extended the Euler definition to a complex variable, proved its meromorphic continuation and functional equation, and established a relation between its zeros and the distribution of prime numbers. This paper also contained the Riemann hypothesis, a conjecture about the distribution of complex zeros of the Riemann zeta function that many mathematicians consider th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gamma Function
In mathematics, the gamma function (represented by Γ, capital Greek alphabet, Greek letter gamma) is the most common extension of the factorial function to complex numbers. Derived by Daniel Bernoulli, the gamma function \Gamma(z) is defined for all complex numbers z except non-positive integers, and for every positive integer z=n, \Gamma(n) = (n-1)!\,.The gamma function can be defined via a convergent improper integral for complex numbers with positive real part: \Gamma(z) = \int_0^\infty t^ e^\textt, \ \qquad \Re(z) > 0\,.The gamma function then is defined in the complex plane as the analytic continuation of this integral function: it is a meromorphic function which is holomorphic function, holomorphic except at zero and the negative integers, where it has simple Zeros and poles, poles. The gamma function has no zeros, so the reciprocal gamma function is an entire function. In fact, the gamma function corresponds to the Mellin transform of the negative exponential functi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Elliptic Integral
In integral calculus, an elliptic integral is one of a number of related functions defined as the value of certain integrals, which were first studied by Giulio Fagnano and Leonhard Euler (). Their name originates from their originally arising in connection with the problem of finding the arc length of an ellipse. Modern mathematics defines an "elliptic integral" as any function which can be expressed in the form f(x) = \int_^ R \, dt, where is a rational function of its two arguments, is a polynomial of degree 3 or 4 with no repeated roots, and is a constant. In general, integrals in this form cannot be expressed in terms of elementary functions. Exceptions to this general rule are when has repeated roots, or when contains no odd powers of or if the integral is pseudo-elliptic. However, with the appropriate reduction formula, every elliptic integral can be brought into a form that involves integrals over rational functions and the three Legendre canonical forms, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Y-cruncher
y-cruncher is a computer program for the calculation of some mathematical constant with theoretical accuracy limited only by computing time and available storage space. It was originally developed to calculate the Euler-Mascheroni constant ; the y is derived from it in the name. Since 2010, y-cruncher has been used for all record calculations of the number pi and other constants. The software is downloadable from the website of the developers for Microsoft Windows and Linux. It does not have a graphical interface, but works on the command line. Calculation options are selected or entered via the text menu, the results are saved as a file. Some popular uses of y-cruncher are running hardware benchmarks to measure performance of computer system. An example of such benchmark iHWBOT y-cruncher can also be used for stress-tests, as performed computations are sensitive to RAM errors and the program can automatically detect such errors. Development Alexander J. Yee started dev ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]