Gassmann Triple
In mathematics, a Gassmann triple (or Gassmann-Sunada triple) is a group ''G'' together with two faithful actions on sets ''X'' and ''Y'', such that ''X'' and ''Y'' are not isomorphic as ''G''-sets but every element of ''G'' has the same number of fixed points on ''X'' and ''Y''. They were introduced by Fritz Gassmann in 1926. Applications Gassmann triples have been used to construct examples of pairs of mathematical objects with the same invariants that are not isomorphic, including arithmetically equivalent number fields and isospectral graphs and isospectral Riemannian manifolds. Examples The simple group SIMPLE Group Limited is a conglomeration of separately run companies that each has its core area in International Consulting. The core business areas are Legal Services, Fiduciary Activities, Banking Intermediation and Corporate Service. The d ... ''G'' = SL3(F2) of order 168 acts on the projective plane of order 2, and the actions on the 7 points and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Group (mathematics)
In mathematics, a group is a Set (mathematics), set with an Binary operation, operation that combines any two elements of the set to produce a third element within the same set and the following conditions must hold: the operation is Associative property, associative, it has an identity element, and every element of the set has an inverse element. For example, the integers with the addition, addition operation form a group. The concept of a group was elaborated for handling, in a unified way, many mathematical structures such as numbers, geometric shapes and polynomial roots. Because the concept of groups is ubiquitous in numerous areas both within and outside mathematics, some authors consider it as a central organizing principle of contemporary mathematics. In geometry, groups arise naturally in the study of symmetries and geometric transformations: The symmetries of an object form a group, called the symmetry group of the object, and the transformations of a given type form a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Group Action (mathematics)
In mathematics, a group action of a group G on a set (mathematics), set S is a group homomorphism from G to some group (under function composition) of functions from S to itself. It is said that G acts on S. Many sets of transformation (function), transformations form a group (mathematics), group under function composition; for example, the rotation (mathematics), rotations around a point in the plane. It is often useful to consider the group as an abstract group, and to say that one has a group action of the abstract group that consists of performing the transformations of the group of transformations. The reason for distinguishing the group from the transformations is that, generally, a group of transformations of a mathematical structure, structure acts also on various related structures; for example, the above rotation group also acts on triangles by transforming triangles into triangles. If a group acts on a structure, it will usually also act on objects built from that st ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Set (mathematics)
In mathematics, a set is a collection of different things; the things are '' elements'' or ''members'' of the set and are typically mathematical objects: numbers, symbols, points in space, lines, other geometric shapes, variables, or other sets. A set may be finite or infinite. There is a unique set with no elements, called the empty set; a set with a single element is a singleton. Sets are ubiquitous in modern mathematics. Indeed, set theory, more specifically Zermelo–Fraenkel set theory, has been the standard way to provide rigorous foundations for all branches of mathematics since the first half of the 20th century. Context Before the end of the 19th century, sets were not studied specifically, and were not clearly distinguished from sequences. Most mathematicians considered infinity as potentialmeaning that it is the result of an endless processand were reluctant to consider infinite sets, that is sets whose number of members is not a natural number. Specific ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isomorphism
In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word is derived . The interest in isomorphisms lies in the fact that two isomorphic objects have the same properties (excluding further information such as additional structure or names of objects). Thus isomorphic structures cannot be distinguished from the point of view of structure only, and may often be identified. In mathematical jargon, one says that two objects are the same up to an isomorphism. A common example where isomorphic structures cannot be identified is when the structures are substructures of a larger one. For example, all subspaces of dimension one of a vector space are isomorphic and cannot be identified. An automorphism is an isomorphism from a structure to itself. An isomorphism between two structures is a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fixed Point (mathematics)
In mathematics, a fixed point (sometimes shortened to fixpoint), also known as an invariant point, is a value that does not change under a given transformation (mathematics), transformation. Specifically, for function (mathematics), functions, a fixed point is an element that is mapped to itself by the function. Any set of fixed points of a transformation is also an invariant set. Fixed point of a function Formally, is a fixed point of a function if belongs to both the domain of a function, domain and the codomain of , and . In particular, cannot have any fixed point if its domain is disjoint from its codomain. If is defined on the real numbers, it corresponds, in graphical terms, to a curve in the Euclidean plane, and each fixed-point corresponds to an intersection of the curve with the line , cf. picture. For example, if is defined on the real numbers by f(x) = x^2 - 3 x + 4, then 2 is a fixed point of , because . Not all functions have fixed points: for example, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fritz Gassmann
Fritz Gassmann (1899–1990) was a Swiss mathematician and geophysicist. Life His Ph.D. advisors at ETH Zurich were George Pólya and Hermann Weyl. He was a geophysics professor at the ETH Zurich. Legacy Gassmann is the eponym for the Gassmann triple and Gassmann's equation. Selected publications *Gassmann, Fritz (1951). Über die Elastizität poröser Medien. ''Viertel. Naturforsch. Ges. Zürich'', 96, 1 – 23. (English translation available as pdhere. * * References * *Gerald L. Alexanderson Gerald Lee Alexanderson (1933–2020) was an American mathematician. He was the Michael & Elizabeth Valeriote Professor of Science at Santa Clara University, and in 1997–1998 was president of the Mathematical Association of America. He was also ..."The Random Walks of George Pólya".Mathematical Association of America, 1999. 303pp. . External linksETH Zurich Webpage 1951 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Arithmetically Equivalent Number Fields
In mathematics, the Dedekind zeta function of an algebraic number field ''K'', generally denoted ζ''K''(''s''), is a generalization of the Riemann zeta function (which is obtained in the case where ''K'' is the field of rational numbers Q). It can be defined as a Dirichlet series, it has an Euler product expansion, it satisfies a functional equation, it has an analytic continuation to a meromorphic function on the complex plane C with only a simple pole at ''s'' = 1, and its values encode arithmetic data of ''K''. The extended Riemann hypothesis states that if ''ζ''''K''(''s'') = 0 and 0 1. In the case ''K'' = Q, this definition reduces to that of the Riemann zeta function. Euler product The Dedekind zeta function of K has an Euler product which is a product over all the non-zero prime ideals \mathfrak of \mathcal_K :\zeta_K (s) = \prod_ \frac,\text(s)>1. This is the expression in analytic terms of the uniqueness of prime factorizatio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isospectral Graphs
In mathematics, spectral graph theory is the study of the properties of a graph in relationship to the characteristic polynomial, eigenvalues, and eigenvectors of matrices associated with the graph, such as its adjacency matrix or Laplacian matrix. The adjacency matrix of a simple undirected graph is a real symmetric matrix and is therefore orthogonally diagonalizable; its eigenvalues are real algebraic integers. While the adjacency matrix depends on the vertex labeling, its spectrum is a graph invariant, although not a complete one. Spectral graph theory is also concerned with graph parameters that are defined via multiplicities of eigenvalues of matrices associated to the graph, such as the Colin de Verdière number. Cospectral graphs Two graphs are called cospectral or isospectral if the adjacency matrices of the graphs are isospectral, that is, if the adjacency matrices have equal multisets of eigenvalues. Cospectral graphs need not be isomorphic, but isomorphic graphs a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isospectral Riemannian Manifolds
In theoretical mathematics, the conceptual problem of "hearing the shape of a drum" refers to the prospect of inferring information about the shape of a hypothetical idealized drumhead from the sound it makes when struck, i.e. from analysis of overtones. "Can One Hear the Shape of a Drum?" is the title of a 1966 article by Mark Kac in the ''American Mathematical Monthly'' which made the question famous, though this particular phrasing originates with Lipman Bers. Similar questions can be traced back all the way to physicist Arthur Schuster in 1882. For his paper, Kac was given the Lester R. Ford Award in 1967 and the Chauvenet Prize in 1968. The frequencies at which a drumhead can vibrate depend on its shape. The Helmholtz equation calculates the frequencies if the shape is known. These frequencies are the eigenvalues of the Laplacian in the space. A central question is whether the shape can be predicted if the frequencies are known; for example, whether a Reuleaux triang ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fano Plane
In finite geometry, the Fano plane (named after Gino Fano) is a finite projective plane with the smallest possible number of points and lines: 7 points and 7 lines, with 3 points on every line and 3 lines through every point. These points and lines cannot exist with this pattern of incidences in Euclidean geometry, but they can be given coordinates using the finite field with two elements. The standard notation for this plane, as a member of a family of projective spaces, is . Here, stands for "projective geometry", the first parameter is the geometric dimension (it is a plane, of dimension 2) and the second parameter is the order (the number of points per line, minus one). The Fano plane is an example of a finite incidence structure, so many of its properties can be established using combinatorial techniques and other tools used in the study of incidence geometries. Since it is a projective space, algebraic techniques can also be effective tools in its study. In a separate ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Simple Group
SIMPLE Group Limited is a conglomeration of separately run companies that each has its core area in International Consulting. The core business areas are Legal Services, Fiduciary Activities, Banking Intermediation and Corporate Service. The date of incorporation is listed as 1999 by Companies House of Gibraltar, who class it as a holding company A holding company is a company whose primary business is holding a controlling interest in the Security (finance), securities of other companies. A holding company usually does not produce goods or services itself. Its purpose is to own Share ...; however it is understood that SIMPLE Group's business and trading activities date to the second part of the 90s, probably as an incorporated body. SIMPLE Group Limited is a conglomerate that cultivate secrecy, they are not listed on any Stock Exchange and the group is owned by a complicated series of offshore trusts. The Sunday Times stated that SIMPLE Group's interests could be eva ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
PSL(2,7)
In mathematics, the projective special linear group , isomorphic to , is a finite simple group that has important applications in algebra, geometry, and number theory. It is the automorphism group of the Klein quartic as well as the symmetry group of the Fano plane. With 168 elements, PSL(2, 7) is the smallest nonabelian simple group after the alternating group A5 with 60 elements, isomorphic to . Definition The general linear group consists of all invertible 2×2 matrices over F7, the finite field with 7 elements. These have nonzero determinant. The subgroup consists of all such matrices with unit determinant. Then is defined to be the quotient group : SL(2, 7) / obtained by identifying ''I'' and −''I'', where ''I'' is the identity matrix. In this article, we let ''G'' denote any group that is isomorphic to . Properties ''G'' = has 168 elements. This can be seen by counting the possible columns; there are possibilities for the first column, then possibilities f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |