HOME
*





Games, Puzzles, And Computation
''Games, Puzzles, and Computation'' is a book on game complexity, written by Robert Hearn and Erik Demaine, and published in 2009 by A K Peters. It is revised from Hearn's doctoral dissertation, which was supervised by Demaine. The Basic Library List Committee of the Mathematical Association of America has recommended it for inclusion in undergraduate mathematics libraries. Topics ''Games, Puzzles, and Computation'' concerns the computational complexity theory of solving logic puzzles and making optimal decisions in two-player and multi-player combinatorial games. Its focus is on games and puzzles that have seen real-world play, rather than ones that have been invented for a purely mathematical purpose. In this area it is common for puzzles and games such as sudoku, Rush Hour, reversi, and chess (in generalized forms with arbitrarily large boards) to be computationally difficult: sudoku is NP-complete, Rush Hour and reversi are PSPACE-complete, and chess is EXPTIME-complete. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Game Complexity
Combinatorial game theory has several ways of measuring game complexity. This article describes five of them: state-space complexity, game tree size, decision complexity, game-tree complexity, and computational complexity. Measures of game complexity State-space complexity The state-space complexity of a game is the number of legal game positions reachable from the initial position of the game. When this is too hard to calculate, an upper bound can often be computed by also counting (some) illegal positions, meaning positions that can never arise in the course of a game. Game tree size The game tree size is the total number of possible games that can be played: the number of leaf nodes in the game tree rooted at the game's initial position. The game tree is typically vastly larger than the state space because the same positions can occur in many games by making moves in a different order (for example, in a tic-tac-toe game with two X and one O on the board, this position co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


EXPTIME-complete
In computational complexity theory, the complexity class EXPTIME (sometimes called EXP or DEXPTIME) is the set of all decision problems that are solvable by a deterministic Turing machine in exponential time, i.e., in O(2''p''(''n'')) time, where ''p''(''n'') is a polynomial function of ''n''. EXPTIME is one intuitive class in an exponential hierarchy of complexity classes with increasingly more complex oracles or quantifier alternations. For example, the class 2-EXPTIME is defined similarly to EXPTIME but with a doubly exponential time bound. This can be generalized to higher and higher time bounds. EXPTIME can also be reformulated as the space class APSPACE, the set of all problems that can be solved by an alternating Turing machine in polynomial space. EXPTIME relates to the other basic time and space complexity classes in the following way: P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME ⊆ EXPSPACE. Furthemore, by the time hierarchy theorem and the space hierarchy theo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

2009 Non-fiction Books
9 (nine) is the natural number following and preceding . Evolution of the Arabic digit In the beginning, various Indians wrote a digit 9 similar in shape to the modern closing question mark without the bottom dot. The Kshatrapa, Andhra and Gupta started curving the bottom vertical line coming up with a -look-alike. The Nagari continued the bottom stroke to make a circle and enclose the 3-look-alike, in much the same way that the sign @ encircles a lowercase ''a''. As time went on, the enclosing circle became bigger and its line continued beyond the circle downwards, as the 3-look-alike became smaller. Soon, all that was left of the 3-look-alike was a squiggle. The Arabs simply connected that squiggle to the downward stroke at the middle and subsequent European change was purely cosmetic. While the shape of the glyph for the digit 9 has an ascender in most modern typefaces, in typefaces with text figures the character usually has a descender, as, for example, in . The mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics Books
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SIAM Review
Society for Industrial and Applied Mathematics (SIAM) is a professional society dedicated to applied mathematics, computational science, and data science through research, publications, and community. SIAM is the world's largest scientific society devoted to applied mathematics, and roughly two-thirds of its membership resides within the United States. Founded in 1951, the organization began holding annual national meetings in 1954, and now hosts conferences, publishes books and scholarly journals, and engages in advocacy in issues of interest to its membership. Members include engineers, scientists, and mathematicians, both those employed in academia and those working in industry. The society supports educational institutions promoting applied mathematics. SIAM is one of the four member organizations of the Joint Policy Board for Mathematics. Membership Membership is open to both individuals and organizations. By the end of its first full year of operation, SIAM had 130 membe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




ZbMATH
zbMATH Open, formerly Zentralblatt MATH, is a major reviewing service providing reviews and abstracts for articles in pure and applied mathematics, produced by the Berlin office of FIZ Karlsruhe – Leibniz Institute for Information Infrastructure GmbH. Editors are the European Mathematical Society, FIZ Karlsruhe, and the Heidelberg Academy of Sciences. zbMATH is distributed by Springer Science+Business Media. It uses the Mathematics Subject Classification codes for organising reviews by topic. History Mathematicians Richard Courant, Otto Neugebauer, and Harald Bohr, together with the publisher Ferdinand Springer, took the initiative for a new mathematical reviewing journal. Harald Bohr worked in Copenhagen. Courant and Neugebauer were professors at the University of Göttingen. At that time, Göttingen was considered one of the central places for mathematical research, having appointed mathematicians like David Hilbert, Hermann Minkowski, Carl Runge, and Felix Klein, the great ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Joseph O'Rourke (professor)
Joseph O'Rourke is the Spencer T. and Ann W. Olin Professor of Computer Science at Smith College and the founding chair of the Smith computer science department. His main research interest is computational geometry. One of O'Rourke's early results was an algorithm for finding the minimum bounding box of a point set in three dimensions when the box is not required to be axis-aligned. The problem is made difficult by the fact that the optimal box may not share any of its face planes with the convex hull of the point set. Nevertheless, O'Rourke found an algorithm for this problem with running time O(n^3). In 1985, O'Rourke was the program chair of the first annual Symposium on Computational Geometry. He was formerly the arXiv moderator for computational geometry and discrete mathematics. In 2012 O'Rourke was named a Fellow of the Association for Computing Machinery. Books O'Rourke is the author or editor of: * '' Art Gallery Theorems and Algorithms'' (1987)* ''Computational Geom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computers And Intractability
''Computers and Intractability: A Guide to the Theory of NP-Completeness'' is a textbook by Michael Garey and David S. Johnson. It was the first book exclusively on the theory of NP-completeness and computational intractability. The book features an appendix providing a thorough compendium of NP-complete problems (which was updated in later printings of the book). The book is now outdated in some respects as it does not cover more recent development such as the PCP theorem. It is nevertheless still in print and is regarded as a classic: in a 2006 study, the CiteSeer search engine listed the book as the most cited reference in computer science literature. Open problems Another appendix of the book featured problems for which it was not known whether they were NP-complete or in P (or neither). The problems (with their original names) are: # Graph isomorphism #:This problem is known to be in NP, but it is unknown if it is NP-complete. # Subgraph homeomorphism (for a fixed graph '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Undecidable Problem
In computability theory and computational complexity theory, an undecidable problem is a decision problem for which it is proved to be impossible to construct an algorithm that always leads to a correct yes-or-no answer. The halting problem is an example: it can be proven that there is no algorithm that correctly determines whether arbitrary programs eventually halt when run. Background A decision problem is any arbitrary yes-or-no question on an infinite set of inputs. Because of this, it is traditional to define the decision problem equivalently as the set of inputs for which the problem returns ''yes''. These inputs can be natural numbers, but also other values of some other kind, such as strings of a formal language. Using some encoding, such as a Gödel numbering, the strings can be encoded as natural numbers. Thus, a decision problem informally phrased in terms of a formal language is also equivalent to a set of natural numbers. To keep the formal definition simple, it i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Undirected Graph
In discrete mathematics, and more specifically in graph theory, a graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense "related". The objects correspond to mathematical abstractions called '' vertices'' (also called ''nodes'' or ''points'') and each of the related pairs of vertices is called an ''edge'' (also called ''link'' or ''line''). Typically, a graph is depicted in diagrammatic form as a set of dots or circles for the vertices, joined by lines or curves for the edges. Graphs are one of the objects of study in discrete mathematics. The edges may be directed or undirected. For example, if the vertices represent people at a party, and there is an edge between two people if they shake hands, then this graph is undirected because any person ''A'' can shake hands with a person ''B'' only if ''B'' also shakes hands with ''A''. In contrast, if an edge from a person ''A'' to a person ''B'' means that ''A'' owes money to ''B'', th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Complete (complexity)
In computational complexity theory, a computational problem is complete for a complexity class if it is, in a technical sense, among the "hardest" (or "most expressive") problems in the complexity class. More formally, a problem ''p'' is called hard for a complexity class ''C'' under a given type of reduction if there exists a reduction (of the given type) from any problem in ''C'' to ''p''. If a problem is both hard for the class and a member of the class, it is complete for that class (for that type of reduction). A problem that is complete for a class ''C'' is said to be C-complete, and the class of all problems complete for ''C'' is denoted C-complete. The first complete class to be defined and the most well known is NP-complete, a class that contains many difficult-to-solve problems that arise in practice. Similarly, a problem hard for a class ''C'' is called C-hard, e.g. NP-hard. Normally, it is assumed that the reduction in question does not have higher computational com ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nondeterministic Constraint Logic
In theoretical computer science, nondeterministic constraint logic is a combinatorial system in which an orientation is given to the edges of a weighted undirected graph, subject to certain constraints. One can change this orientation by steps in which a single edge is reversed, subject to the same constraints. The constraint logic problem and its variants have been proven to be PSPACE-complete to determine whether there exists a sequence of moves that reverses a specified edge and are very useful to show various games and puzzles are PSPACE-hard or PSPACE-complete. This is a form of reversible logic in that each sequence of edge orientation changes can be undone. The hardness of this problem has been used to prove that many games and puzzles have high game complexity. Constraint graphs In the simplest version of nondeterministic constraint logic, each edge of an undirected graph has weight either one or two. (The weights may also be represented graphically by drawing edges of w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]