HOME
*





Fourier's Theorem On Polynomial Real Roots
In mathematics, Budan's theorem is a theorem for bounding the number of real roots of a polynomial in an interval, and computing the parity of this number. It was published in 1807 by François Budan de Boislaurent. A similar theorem was published independently by Joseph Fourier in 1820. Each of these theorems is a corollary of the other. Fourier's statement appears more often in the literature of 19th century and has been referred to as Fourier's, Budan–Fourier, Fourier–Budan, and even Budan's theorem Budan's original formulation is used in fast modern algorithms for real-root isolation of polynomials. Sign variation Let c_0, c_1, c_2, \ldots c_k be a finite sequence of real numbers. A ''sign variation'' or ''sign change'' in the sequence is a pair of indices such that c_ic_j < 0, and either or c_k = 0 for all such that . In other words, a sign variation occurs in the sequence at each place where the signs change, when ignoring zeros. For studying ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parity (mathematics)
In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is a multiple of two, and odd if it is not.. For example, −4, 0, 82 are even because \begin -2 \cdot 2 &= -4 \\ 0 \cdot 2 &= 0 \\ 41 \cdot 2 &= 82 \end By contrast, −3, 5, 7, 21 are odd numbers. The above definition of parity applies only to integer numbers, hence it cannot be applied to numbers like 1/2 or 4.201. See the section "Higher mathematics" below for some extensions of the notion of parity to a larger class of "numbers" or in other more general settings. Even and odd numbers have opposite parities, e.g., 22 (even number) and 13 (odd number) have opposite parities. In particular, the parity of zero is even. Any two consecutive integers have opposite parity. A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. That is, if the last digit is 1, 3, 5, 7, or 9, then it is odd; oth ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Theory Of Equations
In algebra, the theory of equations is the study of algebraic equations (also called "polynomial equations"), which are equations defined by a polynomial. The main problem of the theory of equations was to know when an algebraic equation has an algebraic solution. This problem was completely solved in 1830 by Évariste Galois, by introducing what is now called Galois theory. Before Galois, there was no clear distinction between the "theory of equations" and "algebra". Since then algebra has been dramatically enlarged to include many new subareas, and the theory of algebraic equations receives much less attention. Thus, the term "theory of equations" is mainly used in the context of the history of mathematics, to avoid confusion between old and new meanings of "algebra". History Until the end of the 19th century, "theory of equations" was almost synonymous with "algebra". For a long time, the main problem was to find the solutions of a single non-linear polynomial equation in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Theorems
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Root-finding Algorithm
In mathematics and computing, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function , from the real numbers to real numbers or from the complex numbers to the complex numbers, is a number such that . As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form, root-finding algorithms provide approximations to zeros, expressed either as floating-point numbers or as small isolating intervals, or disks for complex roots (an interval or disk output being equivalent to an approximate output together with an error bound). Solving an equation is the same as finding the roots of the function . Thus root-finding algorithms allow solving any equation defined by continuous functions. However, most root-finding algorithms do not guarantee that they will find all the roots; in particular, if such an algorithm does not find any root, that does not mean that no root exists. Most num ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Properties Of Polynomial Roots
Property is the ownership of land, resources, improvements or other tangible objects, or intellectual property. Property may also refer to: Mathematics * Property (mathematics) Philosophy and science * Property (philosophy), in philosophy and logic, an abstraction characterizing an object * Material properties, properties by which the benefits of one material versus another can be assessed * Chemical property, a material's properties that becomes evident during a chemical reaction *Physical property, any property that is measurable whose value describes a state of a physical system *Semantic property * Thermodynamic properties, in thermodynamics and materials science, intensive and extensive physical properties of substances * Mental property, a property of the mind studied by many sciences and parasciences Computer science * Property (programming), a type of class member in object-oriented programming * .properties, a Java Properties File to store program settings as name-v ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Algebra
In mathematics and computer science, computer algebra, also called symbolic computation or algebraic computation, is a scientific area that refers to the study and development of algorithms and software for manipulating mathematical expressions and other mathematical objects. Although computer algebra could be considered a subfield of scientific computing, they are generally considered as distinct fields because scientific computing is usually based on numerical computation with approximate floating point numbers, while symbolic computation emphasizes ''exact'' computation with expressions containing variables that have no given value and are manipulated as symbols. Software applications that perform symbolic calculations are called ''computer algebra systems'', with the term ''system'' alluding to the complexity of the main applications that include, at least, a method to represent mathematical data in a computer, a user programming language (usually different from the lang ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Joseph Alfred Serret
Joseph Alfred Serret (; August 30, 1819 – March 2, 1885) was a French people, French mathematician who was born in Paris, France, and died in Versailles (city), Versailles, France. See also *Frenet–Serret formulas Books by J. A. Serret Traité de trigonométrie(Gautier-Villars, 1880) Cours de calcul differentiel et integral t. 1(Gauthier-Villars, 1900) Cours de calcul differentiel et integral t. 2(Gauthier-Villars, 1900) Cours d'algèbre supérieure. Tome I(Gauthier-Villars, 1877) Cours d'algèbre supérieure. Tome II(Gauthier-Villars, 1879) External links

* * 1819 births 1885 deaths 19th-century French mathematicians École Polytechnique alumni Members of the French Academy of Sciences Differential geometers {{France-mathematician-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Möbius Transformation
In geometry and complex analysis, a Möbius transformation of the complex plane is a rational function of the form f(z) = \frac of one complex variable ''z''; here the coefficients ''a'', ''b'', ''c'', ''d'' are complex numbers satisfying ''ad'' − ''bc'' ≠ 0. Geometrically, a Möbius transformation can be obtained by first performing stereographic projection from the plane to the unit two-sphere, rotating and moving the sphere to a new location and orientation in space, and then performing stereographic projection (from the new position of the sphere) to the plane. These transformations preserve angles, map every straight line to a line or circle, and map every circle to a line or circle. The Möbius transformations are the projective transformations of the complex projective line. They form a group called the Möbius group, which is the projective linear group PGL(2,C). Together with its subgroups, it has numerous applications in mathematics and physics. Möbius tra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Continued Fraction
In mathematics, a continued fraction is an expression obtained through an iterative process of representing a number as the sum of its integer part and the reciprocal of another number, then writing this other number as the sum of its integer part and another reciprocal, and so on. In a finite continued fraction (or terminated continued fraction), the iteration/recursion is terminated after finitely many steps by using an integer in lieu of another continued fraction. In contrast, an infinite continued fraction is an infinite expression. In either case, all integers in the sequence, other than the first, must be positive. The integers a_i are called the coefficients or terms of the continued fraction. It is generally assumed that the numerator of all of the fractions is 1. If arbitrary values and/or functions are used in place of one or more of the numerators or the integers in the denominators, the resulting expression is a generalized continued fraction. When it is nece ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vincent's Theorem
In mathematics, Vincent's theorem—named after Alexandre Joseph Hidulphe Vincent—is a theorem that isolates the real roots of polynomials with rational coefficients. Even though Vincent's theorem is the basis of the fastest method for the isolation of the real roots of polynomials, it was almost totally forgotten, having been overshadowed by Sturm's theorem; consequently, it does not appear in any of the classical books on the theory of equations (of the 20th century), except for Uspensky's book. Two variants of this theorem are presented, along with several (continued fractions and bisection) real root isolation methods derived from them. Sign variation :Let ''c''0, ''c''1, ''c''2, ... be a finite or infinite sequence of real numbers. Suppose ''l'' 1. To obtain an arbitrary positive root we need to assume that a_1 \ge 0. * Negative roots are obtained by replacing ''x'' by −''x'', in which case the negative roots become positive. Vincent's theorem: Bisection version (Alesin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Jacques Charles François Sturm
Jacques Charles François Sturm (29 September 1803 – 15 December 1855) was a French mathematician. Life and work Sturm was born in Geneva (then part of France) in 1803. The family of his father, Jean-Henri Sturm, had emigrated from Strasbourg around 1760—about 50 years before Charles-François's birth. His mother's name was Jeanne-Louise-Henriette Gremay. In 1818, he started to follow the lectures of the academy of Geneva. In 1819, the death of his father forced Sturm to give lessons to children of the rich in order to support his own family. In 1823, he became tutor to the son of Madame de Staël. At the end of 1823, Sturm stayed in Paris for a short time following the family of his student. He resolved, with his school-fellow Jean-Daniel Colladon, to try his fortune in Paris, and obtained employment on the ''Bulletin universel''. In 1829, he discovered the theorem that bears his name, and concerns real-root isolation, that is the determination of the number and the loca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Descartes' Rule Of Signs
In mathematics, Descartes' rule of signs, first described by René Descartes in his work ''La Géométrie'', is a technique for getting information on the number of positive real roots of a polynomial. It asserts that the number of positive roots is at most the number of sign changes in the sequence of polynomial's coefficients (omitting the zero coefficients), and that the difference between these two numbers is always even. This implies, in particular, that if the number of sign changes is zero or one, then there are exactly zero or one positive roots, respectively. By a homographic transformation of the variable, one may use Descartes' rule of signs for getting a similar information on the number of roots in any interval. This is the basic idea of Budan's theorem and Budan–Fourier theorem. By repeating the division of an interval into two intervals, one gets eventually a list of disjoint intervals containing together all real roots of the polynomial, and containing each exact ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]