Fuchsian Theory
   HOME





Fuchsian Theory
The Fuchsian theory of linear differential equation In mathematics, a linear differential equation is a differential equation that is linear equation, linear in the unknown function and its derivatives, so it can be written in the form a_0(x)y + a_1(x)y' + a_2(x)y'' \cdots + a_n(x)y^ = b(x) wher ...s, which is named after Lazarus Immanuel Fuchs, provides a characterization of various types of singularities and the relations among them. At any Regular singular point, ordinary point of a homogeneous linear differential equation of order n there exists a fundamental system of n linearly independent power series solutions. A non-ordinary point is called a singularity. At a Regular singular point, singularity the maximal number of linearly independent power series solutions may be less than the order of the differential equation. Generalized series solutions The generalized series at \xi\in\mathbb is defined by : (z-\xi)^\alpha\sum_^\infty c_k(z-\xi)^k, \text \alpha,c_k \in \mat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Differential Equation
In mathematics, a linear differential equation is a differential equation that is linear equation, linear in the unknown function and its derivatives, so it can be written in the form a_0(x)y + a_1(x)y' + a_2(x)y'' \cdots + a_n(x)y^ = b(x) where and are arbitrary differentiable functions that do not need to be linear, and are the successive derivatives of an unknown function of the variable . Such an equation is an ordinary differential equation (ODE). A ''linear differential equation'' may also be a linear partial differential equation (PDE), if the unknown function depends on several variables, and the derivatives that appear in the equation are partial derivatives. Types of solution A linear differential equation or a system of linear equations such that the associated homogeneous equations have constant coefficients may be solved by quadrature, which means that the solutions may be expressed in terms of antiderivative, integrals. This is also true for a linear equation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lazarus Fuchs
Lazarus Immanuel Fuchs (5 May 1833 – 26 April 1902) was a Jewish-German mathematician who contributed important research in the field of linear differential equations. He was born in Mosina, Moschin in the Grand Duchy of Posen (modern-day Mosina, Poland) and died in Berlin, German Empire, Germany. He was buried in Schöneberg in the Alter St.-Matthäus-Kirchhof, St. Matthew's Cemetery. His grave in section H is preserved and listed as a grave of honour of the State of Berlin. Contribution He is the eponym of Fuchsian groups and functions, and the Picard–Fuchs equation. A singularity (mathematics), singular point ''a'' of a linear differential equation :y''+p(x)y'+q(x)y=0 is called Fuchsian if ''p'' and ''q'' are meromorphic function, meromorphic around the point ''a'', and have poles of orders at most 1 and 2, respectively. According to a Fuchs's theorem, theorem of Fuchs, this condition is necessary and sufficient for the regular singular point, regularity of the singular ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Singular Point
In mathematics, in the theory of ordinary differential equations in the complex plane \Complex, the points of \Complex are classified into ''ordinary points'', at which the equation's coefficients are analytic functions, and ''singular points'', at which some coefficient has a singularity. Then amongst singular points, an important distinction is made between a regular singular point, where the growth of solutions is bounded (in any small sector) by an algebraic function, and an irregular singular point, where the full solution set requires functions with higher growth rates. This distinction occurs, for example, between the hypergeometric equation, with three regular singular points, and the Bessel equation which is in a sense a limiting case, but where the analytic properties are substantially different. Formal definitions More precisely, consider an ordinary linear differential equation of -th order f^(z) + \sum_^ p_i(z) f^ (z) = 0 with meromorphic functions. The equa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fundamental System
In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable. As with any other DE, its unknown(s) consists of one (or more) function(s) and involves the derivatives of those functions. The term "ordinary" is used in contrast with ''partial'' differential equations (PDEs) which may be with respect to one independent variable, and, less commonly, in contrast with ''stochastic'' differential equations (SDEs) where the progression is random. Differential equations A linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form :a_0(x)y +a_1(x)y' + a_2(x)y'' +\cdots +a_n(x)y^+b(x)=0, where a_0(x),\ldots,a_n(x) and b(x) are arbitrary differentiable functions that do not need to be linear, and y',\ldots, y^ are the successive derivatives of the unknown function y of the variable x. Among ordin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Frobenius Method
In mathematics, the method of Frobenius, named after Ferdinand Georg Frobenius, is a way to find an infinite series solution for a linear second-order ordinary differential equation of the form z^2 u'' + p(z)z u'+ q(z) u = 0 with u' \equiv \frac and u'' \equiv \frac. in the vicinity of the regular singular point z=0. One can divide by z^2 to obtain a differential equation of the form u'' + \fracu' + \fracu = 0 which will not be solvable with regular power series methods if either or is not analytic at . The Frobenius method enables one to create a power series solution to such a differential equation, provided that ''p''(''z'') and ''q''(''z'') are themselves analytic at 0 or, being analytic elsewhere, both their limits at 0 exist (and are finite). History Frobenius' contribution was not so much in all the possible ''forms'' of the series solutions involved (see below). These forms had all been established earlier, by Lazarus Fuchs. The ''indicial polynomial'' (see bel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Laurent Series
In mathematics, the Laurent series of a complex function f(z) is a representation of that function as a power series which includes terms of negative degree. It may be used to express complex functions in cases where a Taylor series expansion cannot be applied. The Laurent series was named after and first published by Pierre Alphonse Laurent in 1843. Karl Weierstrass had previously described it in a paper written in 1841 but not published until 1894. Definition The Laurent series for a complex function f(z) about an arbitrary point c is given by f(z) = \sum_^\infty a_n(z-c)^n, where the coefficients a_n are defined by a contour integral that generalizes Cauchy's integral formula: a_n =\frac\oint_\gamma \frac \, dz. The path of integration \gamma is counterclockwise around a Jordan curve enclosing c and lying in an annulus A in which f(z) is holomorphic ( analytic). The expansion for f(z) will then be valid anywhere inside the annulus. The annulus is shown in red in th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Formal Power Series
In mathematics, a formal series is an infinite sum that is considered independently from any notion of convergence, and can be manipulated with the usual algebraic operations on series (addition, subtraction, multiplication, division, partial sums, etc.). A formal power series is a special kind of formal series, of the form \sum_^\infty a_nx^n=a_0+a_1x+ a_2x^2+\cdots, where the a_n, called ''coefficients'', are numbers or, more generally, elements of some ring, and the x^n are formal powers of the symbol x that is called an indeterminate or, commonly, a variable. Hence, power series can be viewed as a generalization of polynomials where the number of terms is allowed to be infinite, and differ from usual power series by the absence of convergence requirements, which implies that a power series may not represent a function of its variable. Formal power series are in one to one correspondence with their sequences of coefficients, but the two concepts must not be confused, sin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


If And Only If
In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its pre-existing meaning. For example, ''P if and only if Q'' means that ''P'' is true whenever ''Q'' is true, and the only case in which ''P'' is true is if ''Q'' is also true, whereas in the case of ''P if Q ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fuchs Relation
In mathematics, the Fuchs relation is a relation between the starting exponents of formal series solutions of certain linear differential equations, so called ''Fuchsian equations''. It is named after Lazarus Immanuel Fuchs. Definition Fuchsian equation A linear differential equation in which every singular point, including the point at infinity, is a regular singularity is called ''Fuchsian equation'' or ''equation of Fuchsian type''. For Fuchsian equations a formal fundamental system exists at any point, due to the Fuchsian theory. Coefficients of a Fuchsian equation Let a_1, \dots, a_r \in \mathbb be the r regular singularities in the finite part of the complex plane of the linear differential equationLf := \frac + q_1\frac + \cdots + q_\frac + q_nf with meromorphic functions q_i. For linear differential equations the singularities are exactly the singular points of the coefficients. Lf=0 is a Fuchsian equation if and only if the coefficients are rational functions ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]